

UNIVERSIDADE DE UBERABA DIOGO QUEIROZ DE OLIVEIRA

EXTRAÇÃO DE ÓLEOS ESSENCIAIS DA CASCA DE LARANJA-PERA (Citrus sinensis L. Osbeck) PELO MÉTODO SOXHLET: ANÁLISE DE VARIÁVEIS E RENDIMENTO

DIOGO QUEIROZ DE OLIVEIRA

EXTRAÇÃO DE ÓLEOS ESSENCIAIS DA CASCA DE LARANJA-PERA (Citrus sinensis L. Osbeck) PELO MÉTODO SOXHLET: ANÁLISE DE VARIÁVEIS E RENDIMENTO

Dissertação de Mestrado apresentada como requisito parcial para obtenção do título de Mestre em Engenharia Química da Universidade de Uberaba.

Orientador: Prof. Dr. Adriano Dawison de Lima

UBERABA, MG

2025

Catalogação elaborada pelo Setor de Referência da Biblioteca Central UNIUBE

Oliveira, Diogo Queiroz de.

O4e

Extração de óleos essenciais da casca de laranja-pera (Citrus sinensis L. Osbeck) pelo método Soxhlet: análise de variáveis e rendimento / Diogo Queiroz de Oliveira. – Uberaba (MG), 2025.

75 f.: il., color.

Dissertação (Mestrado) - Universidade de Uberaba. Programa de Pós-Graduação em Engenharia Química.

Orientador: Prof. Dr. Adriano Dawison de Lima.

 Laranja. 2. Essências e óleos essenciais. 3. Laboratórios – Aparelhos e instrumentos. I. Lima, Adriano Dawison de. II. Universidade de Uberaba. Programa de Pós-Graduação em Engenharia Química. IV. Título.

CDD 634.31

Tatiane da Silva Viana - Bibliotecária - CRB-6/3171

DIOGO QUEIROZ DE OLIVEIRA

EXTRAÇÃO DE ÓLEOS ESSENCIAIS DA CASCA DE LARANJA-PERA (Citrussinensis L. Osbeck) PELO MÉTODO SOXHLET: ANÁLISE DE VARIÁVEIS E RENDIMENTO

Dissertação apresentada como parte dos requisitos para obtenção do título de Mestre em Engenharia Química do Programa de Pós-Graduação em Engenharia Química - Mestrado Profissional da Universidade de Uberaba (PPGEQ-MP/UNIUBE).

Área de Concentração: Desenvolvimento de Processos Químicos Agroindustriais

Aprovado em: 31/07/2025

BANCA EXAMINADORA:

Prof(a). Dr(a). Adriano Dawison de Lima – Orientador(a)
Universidade de Uberaba

Prof(a). Dr(a). José Roberto Delalibera Finzer

Universidade de Uberaba

Prof(a). Dr(a). Marília Assunta Sfreddo
IFRS - Instituto Federal do Rio Grande do Sul

AGRADECIMENTOS

Ao meu orientador, professor Prof. Dr. Adriano Dawison de Lima pelo apoio e supervisão. Ao Coordenador do Programa de Pós-Graduação em Engenharia Química da Universidade de Uberaba, Prof. Dr. José Roberto Delalibera Finzer por todos os ensinamentos e inspirações.

À minha colega do mestrado Ana Flávia Mendonça Santana pelo apoio e ensinamento prático durante as realizações dos testes e ensaios laboratoriais. Agradeço também à Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), APQ-01203-23 e Universidade de Uberaba (Uniube) pela realização/execução deste trabalho.

À minha família, em especial aos meus pais, pelo apoio incondicional em cada etapa que realizo em minha vida. Por fim, mas não menos importante, esse agradecimento estende-se à comunidade acadêmica e científica em geral, por criar um ambiente de crescimento mútuo e troca constante de conhecimento.

RESUMO

Este estudo investigou a extração de óleo essencial da casca de laranja-pera (Citrus sinensis L. Osbeck) pelo método de Soxhlet, considerando-se as influências do tipo de solvente utilizado e o teor de umidade da matriz vegetal em relação ao rendimento do óleo extraído. A casca de laranja, coproduto de elevada disponibilidade na indústria de alimentos e bebidas, possui compostos bioativos valiosos com aplicações industriais, o que torna a extração de seu óleo essencial ambiental e economicamente relevante. Para melhorar o rendimento da extração, foram realizados ensaios em condições que variaram o tipo de solvente utilizado e a umidade da amostra. Desta forma, foi possível analisar a variação do rendimento de óleo em cada condição. Os resultados demonstraram que as amostras extraídas com o hexano apresentaram maior rendimento em comparação às amostras submetidas ao etanol. Esse comportamento pode ser atribuído à maior afinidade do hexano pelos compostos lipofílicos presentes no óleo essencial da casca de laranja, facilitando sua solubilização e consequente extração. Além disso, observou-se que a umidade da matriz vegetal influenciou significativamente a eficiência da extração. As amostras úmidas apresentaram maior rendimento de óleo essencial em relação às amostras secas, devido a perda de alguns compostos inerentes ao processo de secagem. A combinação mais eficiente foi obtida quando se utilizou hexano como solvente nas amostras úmidas, evidenciando que a interação entre umidade e tipo de solvente desempenha um papel determinante na extração. Os resultados reforçam a importância da definição adequada dos métodos e parâmetros operacionais para maximizar a recuperação do óleo essencial, contribuindo para o aproveitamento sustentável desse coproduto da indústria cítrica. O presente trabalho contribui para o entendimento do aproveitamento de coprodutos agrícolas na extração de compostos bioativos e para o desenvolvimento de metodologias otimizadas para maximização de rendimento em processos de extração de óleos essenciais.

Palavras-chave: laranja, casca de laranja, óleo essencial, soxhlet.

ABSTRACT

This study investigated the extraction of essential oil from the peel of sweet orange (Citrus sinensis L. Osbeck) using the Soxhlet method, considering the influence of solvent type and moisture content of the plant matrix on the oil yield. Orange peel, a byproduct with high availability in the food and beverage industry, contains valuable bioactive compounds with industrial applications, making its essential oil extraction environmentally and economically relevant. To optimize extraction yield, experiments were conducted under conditions that varied the type of solvent used and the moisture content of the sample. The variation in oil yield under each condition was analyzed. The results showed that samples extracted with hexane had a higher yield compared to those extracted with ethanol. This behavior can be attributed to the greater affinity of hexane for the lipophilic compounds present in the essential oil of orange peel, facilitating their solubilization and subsequent extraction. Additionally, it was observed that the moisture content of the plant matrix significantly influenced the process efficiency. Wet samples showed a higher essential oil yield compared to dry samples, due to the loss of some compounds during the drying process. The most efficient combination was achieved when hexane was used as a solvent for wet samples, highlighting that the interaction between moisture and solvent type plays a key role in the extraction process. The results emphasize the importance of selecting the appropriate methods and operational parameters to maximize essential oil recovery, contributing to the sustainable utilization of this byproduct of the citrus industry. This study contributes to the understanding of the utilization of agricultural byproducts in the extraction of bioactive compounds and the development of optimized methodologies to maximize yield in essential oil extraction processes.

Key-words: orange, orange peel, essential oil, soxhlet.

LISTA DE FIGURAS

Figura 1 - Laranjeira 'Pera CNPMF D-6' [Citrus sinensis (L.) Osbeck]. Ibicoara, BA	5
Figura 2 - Partes que compõe a laranja-pera	6
Figura 3 - Maiores exportadores de OEs em valores	16
Figura 4 - Maiores exportadores de OEs quantidades (Ton)	16
Figura 5 - Produção de OE no Brasil 2014 – 2018	18
Figura 6 - Fórmula estrutural plana do d-limoneno (à esquerda) e l-limoneno (à direita)	20
Figura 7 - Exportações de OE de laranja na última década	22
Figura 8 - Aparelho de Clevenger utilizado para Hidroevaporação	24
Figura 9 - Esquematização do efeito das micro-ondas sobre a estrutura de matrizes vegetais	27
Figura 10 - Fluxograma do Processamento da Laranja	31
Figura 11 - Funcionamento de Extrator tipo Squeezer	32
Figura 12 - Funcionamento de Extrator tipo Reamer	34
Figura 13 - Sistema de Extração de Óleo da Casca da Laranja	34
Figura 14 - Centrífuga de concentração de óleo da casca da laranja	37
Figura 15 - Laranja-pera utilizadas para os ensaios	40
Figura 16 - Análise de Umidade em Cascas de Laranja-pera	41
Figura 17 - Zest in natura (A) vs Zests desidratadas (B)	42
Figura 18 - Aparelho Soxlet utilizado no processo de extração	45
Figura 19 - Aparato Experimental utilizado para a Evaporação do Solvente	46
Figura 20 - Aspecto Visual das Amostras	50
Figura 21 - Óleo Extraído com o Etanol, após a evaporação (A) vs Óleo Extraído com o	
Hexano, após a evaporação (B)	51
Figura 22 - Efeitos Principais e Interação na Extração de Óleo	56

LISTA DE TABELAS

Tabela 1 - Principais tipos de óleos essenciais e suas respectivas aplicações	9
Tabela 2 - Principais compostos bioativos presentes em óleos essenciais de Citrus	12
Tabela 3 - Principais óleos essenciais utilizados comercialmente	14
Tabela 4 - Principais óleos essenciais no mercado internacional (em 2018)	17
Tabela 5 - Especificações para o óleo essencial de laranja rico em d-limoneno	19
Tabela 6 - Tabela de Comparação entre os testes de Extração Soxhlet com as Cascas de Lara	ınja
	29
Tabela 7 - Propriedades físico-químicas do hexano e do etanol	
	44
Tabela 7 - Propriedades físico-químicas do hexano e do etanol	44 47
Tabela 7 - Propriedades físico-químicas do hexano e do etanol Tabela 8 - Fatores e Níveis do Planejamento Experimental Fatorial	44 47

SUMÁRIO

1 INTRODUÇÃO	1
2 OBJETIVOS	3
3 REVISÃO BIBLIOGRÁFICA E FUNDAMENTAÇÃO TEÓRICA	4
3.1 LARANJA-PERA	4
3.1.1 Aspectos botânicos	4
3.1.2 Aspectos históricos	6
3.1.3 Aspectos econômicos	7
3.2 ÓLEOS ESSENCIAIS	8
3.2.1 Aspectos gerais dos óleos essenciais	8
3.2.2 Aspectos físico-químicos dos óleos essenciais	9
3.2.2.1 Alcaloides	11
3.2.2.2 Flavonoides	11
3.2.2.3 Terpenos	11
3.2.2.4 Outras substâncias bioativas	12
3.2.3 Aplicações comerciais dos óleos essenciais	13
3.2.4 Aspectos econômicos dos óleos essenciais	15
3.2.4.1 A participação do Brasil no mercado dos Óleos Essenciais	17
3.2.5 Óleos essenciais provenientes da casca de laranja	18
3.2.5.1 Funcionalidade dos óleos essenciais da casca de laranja e o d-limoneno	19
3.2.5.2 Mercado dos óleos essenciais de laranja	20
3.3 PROCESSOS DE EXTRAÇÃO DE ÓLEOS ESSENCIAIS	22
3.3.1 Extração por evaporação a vapor	22
3.3.2 Extração por hidroevaporação	23
3.3.3 Extração por CO ₂ em estado supercrítico	25
3.3.4 Extração Assistida por Ultrasom	25
3.3.5 Extração Assistida por Micro-ondas	26
3.3.6 Extração por solvente	28
3.3.7 Extração Enfleurage	29
3.4 PROCESSAMENTO DA LARANJA EM ESCALA INDUSTRIAL	30
3.4.1 Tipos de Extratores	31
3.4.1.1 Extrator Squeezer	32

3.4.1.2 Extrator <i>Reamer</i>	33
3.4.2 Separação do Óleo Essencial da Casca da Laranja	35
3.4.2.1 Formação da Emulsão	35
3.4.2.2 Peneiramento Inicial	35
3.4.2.3 Centrifugação Primária	36
3.4.2.4 Centrifugação Secundária	36
3.4.2.5 Polimento do Óleo	37
3.4.2.6 Decantação e Armazenamento	38
3.4.2.7 Winterização (<i>Dewaxing</i>)	38
3.4.2.8 Recuperação do d-Limoneno	38
4 MATERIAIS E MÉTODOS	
4.1 SELEÇÃO DA MATÉRIA-PRIMA	40
4.2 SELEÇÃO DOS SOLVENTES UTILIZADOS NO PROCESSO DE EXTRA	ÇÃO DO
ÓLEO SOLÚVEL	42
4.3 Desenvolvimento do aparato experimental	44
4.4 PLANEJAMENTO EXPERIMENTAL	46
4.5 CONSIDERAÇÕES EXPERIMENTAIS	48
5 RESULTADOS E DISCUSSÃO	49
5.1 CARACTERÍSTICAS DO ÓLEO ESSENCIAL EXTRAÍDO	49
5.2 RENDIMENTO DE ÓLEO ESSENCIAL	52
5.3 ANÁLISE MATEMÁTICA E ESTATÍSTICA DOS RESULTADOS	55
5.3.1 Análise Matemática	55
5.3.2 Análise Estatística	57
6 CONCLUSÕES	58
REFERÊNCIAS	60

1 INTRODUÇÃO

A laranja-pera (*Citrus sinensis* L. Osbeck), pertencente à família Rutaceae, é uma das variedades mais cultivadas no Brasil e no mundo devido à sua polpa suculenta e doce, amplamente consumida tanto *in natura* quanto na forma de sucos. Além de sua relevância no mercado de alimentos, a casca da laranja-pera é uma fonte rica de óleo essencial (OE), um coproduto de grande valor comercial utilizado nas indústrias farmacêutica, cosmética e de alimentos. As cascas de laranja, muitas vezes tratadas como resíduos, possuem um alto teor de d-limoneno, um monoterpeno com propriedades antioxidantes, anti-inflamatórias e antimicrobianas.

Segundo Bakkali *et al.*, (2018), os óleos essenciais são produtos voláteis, concentrados, com odor característico e pertencentes ao metabolismo secundário das plantas, responsável pela proteção e adaptação ao meio ambiente. Quimicamente, os óleos essenciais são caracterizados por uma mistura complexa de compostos químicos com diferentes concentrações, que determinam suas propriedades sensoriais e funcionais. Assim, os óleos voláteis podem ser constituídos por uma mistura de compostos classificados como terpenos, alcalóides e compostos fenólicos.

A extração de óleo essencial da laranja-pera representa um grande potencial ainda pouco explorado no Brasil. A exploração de coprodutos agrícolas, como as cascas de laranja, para a extração de óleos essenciais, representa uma estratégia sustentável que agrega valor a resíduos frequentemente descartados ou subaproveitados. O óleo essencial de laranja-pera é conhecido por suas propriedades antimicrobianas, antioxidantes e anti-inflamatórias, sendo amplamente utilizado em produtos terapêuticos e de cuidado pessoal.

No Brasil, a produção de óleos essenciais cítricos a partir de coprodutos da indústria de sucos já é consolidada e a utilização das cascas de laranja-pera para a extração de óleos essenciais é massiva. Neste contexto, o presente trabalho tem como objetivo investigar a viabilidade de um processo alternativo ao comercialmente utilizado, a extração do óleo através da centrifugação.

Este estudo tem como objetivo investigar a extração de óleo essencial da casca de laranja-pera utilizando-se o método Soxhlet, avaliando especificamente o impacto do tipo de solvente utilizado no processo e os níveis de umidade da matriz vegetal. Espera-se que a compreensão detalhada desses fatores permita aprimorar as condições de extração, contribuindo para uma melhor utilização de coprodutos agrícolas e para a sustentabilidade da indústria de óleos essenciais. A otimização técnica dessas variáveis é essencial para aumentar a eficiência

da extração, reduzir os tempos de processamento e, potencialmente, diminuir os custos operacionais

No Capítulo 2, os objetivos deste estudo são apresentados com maiores detalhes. O Capítulo 3 traz uma revisão bibliográfica sobre o tema em estudo, abordando os principais aspectos relacionados à matriz vegetal *Citrus sinensis* (L.) Osbeck, aspectos comerciais da laranja-pera e dos óleos essenciais. Foram abordados também, os principais métodos de extração de óleos essenciais e suas particularidades.

O Capítulo 4 abrange os materiais e métodos utilizados nas diferentes etapas deste estudo. Assim, são descritas as metodologias de desenvolvimento do aparato experimental, os ensaios preliminares da extração de óleo essencial de laranja e a avaliação dos efeitos dos fatores da extração.

No Capítulo 5, são apresentados e discutidos os resultados obtidos nas etapas de execução deste trabalho. Por fim, no Capítulo 6, a partir da análise e discussão dos resultados apresentados no capítulo anterior, são sintetizadas as considerações finais e as sugestões para a continuidade deste estudo.

2 OBJETIVOS

Este estudo tem como objetivo principal conduzir uma revisão bibliográfica completa sobre a extração de óleos essenciais, abrangendo tanto os métodos quanto os aspectos cruciais envolvidos. A pesquisa se concentrará na análise comparativa de diferentes tipos de solventes e níveis de umidade presentes na matriz vegetal, com o intuito de estabelecer as condições ótimas operacionais que maximizem a eficiência da extração de óleos essenciais das cascas de laranja-pera (*Citrus sinensis* L. Osbeck) por meio do método de Soxhlet.

A fim de atingir o objetivo geral proposto, foram definidos objetivos específicos que se complementam. Primeiramente, foi realizada uma avaliação do rendimento da extração de óleo essencial de cascas de laranja-pera (*Citrus sinensis* L. Osbeck) utilizando o extrator de Soxhlet em uma variedade de condições controladas. Em seguida, foi realizada uma análise comparativa detalhada dos métodos testados, visando identificar aquele que apresenta o maior rendimento de extração de óleo essencial, garantindo assim o aproveitamento máximo do potencial da matéria-prima.

3 REVISÃO BIBLIOGRÁFICA E FUNDAMENTAÇÃO TEÓRICA

Neste capítulo São apresentadas a revisão bibliográfica e a fundamentação teórica dos tópicos relacionados com as características da matrtiz vegetal e sobre a extração de óleo essencial de cascas de laranja-pera (*Citrus sinensis* L. Osbeck). Além disso, esta revisão também abrange os aspectos econômicos e comerciais referentes à laranja-pera, aos óleos essenciais genericamente e aos óleos essenciais cítricos.

3.1 LARANJA-PERA

3.1.1 Aspectos botânicos

A Laranjeira 'Pera-Rio', 'Pera' ou 'Pera Coroa' (*Citrus sinensis* L. Osbeck) é a mais importante variedade cítrica do Brasil, pois seus frutos apresentam excelente qualidade para os mercados interno e externo de fruta fresca para a industrialização, participando com cerca de 38% do total de frutas processadas (Pompeu Junior, 2001).

Segundo Corazza *et al.* (2005), os citrus são representados por árvores perenes, copas com ramos angulares, espinhos axilares, folhas unilobadas, flores brancas e aromáticas, isoladas ou em grupos, em geral com 4-5 sépalas, 4-8 pétalas. O androceu é constituído por numerosos estames ligados em feixes e o gineceu apresenta ovário único com 8-15 carpelos fusionados, contendo normalmente 4-8 óvulos. Os frutos, com cor e forma variadas, são envolvidos por uma casca coriácea. A polpa é constituída por vesículas de suco pedunculadas e ligadas à parede dorsal do loco. Os septos carpelares são separados pelo endocárpio, um tecido branco denominado de albedo. As sementes, de formato obovóide a arredondado, podem conter de um a vários embriões.

A laranjeira foi definida por como uma planta adulta de porte médio, copa ereta. Fruto de tamanho médio, ovalado, sabor doce quando colhido de julho a setembro, com média de seis sementes. No Brasil, apresenta maturação tardia, de julho a setembro, com produções temporãs ao longo do ano. O autor acrescenta que a laranja é a cultura mais difundida no país, chegando a ser quase exclusiva em alguns estados, como Bahia e Sergipe. É intolerante ao vírus-datristeza-dos-citros, embora mostre predominância de estirpes fracas, devendo ser premunida quando forem obtidos novos clones (Cunha Sobrinho, 2013).

Segundo Lorenzi *et al.* (2006), as laranjeiras (*Citrus sinensis* L. Osbeck) são árvores de porte médio, as quais atingem 5 a 10 m de altura, e copa de formato esférico. Em função do

fruto, podem ser subdivididas em quatro subgrupos: comum, sem nenhuma característica evidente; do grupo Navel ou as laranjas-de-umbigo; as sanguíneas, e as de baixa acidez. As cultivares em cada um desses subgrupos diferenciam-se quanto à maturação, que pode ser precoce, meia-estação ou tardia, e, ainda, quanto à coloração do endocarpo, que pode ser mais claro, mais alaranjado ou apresentar polpa vermelho intensa, pela presença de antocianinas.

Segundo Van Boekel (2012), o fruto da laranjeira-pera é um hesperídio, uma forma de baga com casca dura e segmentos internos cheios de vesículas de suco. A casca externa, ou flavedo, é rica em óleos essenciais, muito valorizados na indústria de fragrâncias e alimentos. A fruta varia em tamanho de cinco a treze centímetros de diâmetro, podendo ser esférica ou ligeiramente oval. A cor da casca varia de amarelo a laranja profundo, enquanto a polpa interna pode ser de um laranja brilhante a um laranja-avermelhado. Cada fruto contém vários segmentos, geralmente cerca de dez, preenchidos com vesículas de suco e frequentemente algumas sementes. A laranja-pera é conhecida por seu sabor doce e suculento, sendo uma das variedades de laranja mais apreciadas para consumo in natura e para a produção de suco. Na Figura 1 é mostrada a imagem de uma planta adulta da laranja-pera (*Citrus sinensis* L. Osbeck) em fase de maturação dos frutos.

Figura 1 - Laranjeira 'Pera CNPMF D-6' [Citrus sinensis (L.) Osbeck]. Ibicoara, BA.

Fonte: (CUNHA SOBRINHO, 2013, p. 297)

A laranja é amplamente reconhecida como uma importante fonte de vitamina C, fibras alimentares e antioxidantes, desempenhando um papel significativo na promoção da saúde e na prevenção de doenças. Além desses nutrientes essenciais, a fruta contém compostos bioativos que contribuem para suas propriedades funcionais. O conteúdo líquido, ou suco, está disposto em células especializadas de armazenagem, envolvidas por uma membrana, formando estruturas conhecidas como gomos. Esses gomos são recobertos por uma camada esponjosa e branca, denominada albedo, rica em fibras e pectina, que desempenha um papel importante na textura e no valor nutricional da fruta. Vários gomos se agrupam para formar a fruta completa, que é revestida externamente por uma camada colorida e rica em óleos essenciais, conhecida como flavedo. O flavedo é responsável pelo aroma característico da laranja e contém compostos voláteis que têm aplicações na indústria alimentícia e cosmética Figura 2 ilustra as partes constituintes de uma laranja de espécie genérica, destacando a complexidade estrutural e funcional dessa fruta amplamente consumida.

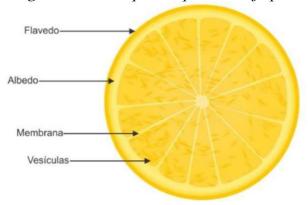


Figura 2 - Partes que compõe a laranja-pera

Fonte: NBA (2018), adaptado pelo autor.

3.1.2 Aspectos históricos

A laranjeira 'Pera-Rio', também chamada de 'Pera' ou 'Pera Coroa' (*Citrus sinensis* L. Osbeck), destaca-se como a variedade cítrica de maior importância no Brasil, mas sua origem ainda é incerta. Estudos sobre a procedência da laranja 'Bahia' no país, baseados em diversas pesquisas indicam essa incerteza. Apesar de ser amplamente reconhecida como uma variedade tipicamente brasileira, a origem da 'Pera' continua desconhecida. Diversas teorias são sugeridas, porém, sem comprovação definitiva. (Donadio *et al.*, 1999).

Ainda sobre a origem da laranja-pera, segundo o periódico da Associtrus (2008)

[...] originária da Ásia, mais especificamente da Indochina e do sul da China, a laranja foi trazida ao Brasil pelos portugueses em meados do século XVII, embora seu cultivo remonte a um período de mais de 2 mil anos antes de Cristo. Devido a uma geada sem precedentes que destruiu grande parte dos laranjais na Flórida (EUA) nos anos 1960, a cultura da laranja desenvolveu-se fortemente no Brasil, visto que houve um aumento na demanda de importações desse fruto.

As laranjas doces têm sua origem no nordeste da Índia e são as espécies de frutas cítricas mais cultivadas no mundo. Sua disseminação ocorreu rapidamente através das rotas comerciais entre a Ásia, a Europa e a África, tornando difícil determinar com precisão quando foram introduzidas na Europa. Há indícios de que Colombo tenha iniciado uma plantação na ilha de Hispaniola durante sua segunda viagem, em 1493. Além disso, exploradores espanhóis foram responsáveis por levar as laranjas para o Novo Mundo, incluindo a Flórida, onde foram cultivadas após a fundação de San Augustine, em 1565. No Texas, embora a toranja vermelha seja mais famosa, o cultivo de laranjeiras também ocorre em diversas regiões do estado onde o clima é favorável aos citros (Sauls, 1998).

A origem da laranja-pera no Brasil é incerta, sendo considerada desconhecida por alguns pesquisadores. No início do século XX, teria sido levada para Limeira, em São Paulo, de onde se espalhou por todo o estado e pelo país. Ao longo desse processo, passou a ser conhecida por diferentes nomes, como 'Pera Rio', 'Pera Coroa' ou simplesmente 'Pera'.

3.1.3 Aspectos econômicos

A citricultura tem um papel essencial na economia e na sociedade brasileiras, especialmente na região do cinturão citrícola, que compreende os estados de São Paulo e Minas Gerais. Essa atividade é responsável por gerar cerca de 230 mil empregos diretos e indiretos, sendo uma importante fonte de sustento para milhares de famílias, conforme apontam Neves *et al.* (2010). Apesar de sua significativa contribuição econômica, o setor tem enfrentado desafios financeiros e crises desde o início da década de 2010, o que levou à redução da área cultivada e ao abandono da atividade por parte de muitos produtores, como observado por Adami (2010).

Conforme levantamento da CitrusBR (2014) A cadeia produtiva da citricultura enfrenta uma série de desafios que comprometem sua estabilidade e lucratividade. Dentre esses obstáculos, destacam-se o controle de doenças, como o *huanglongbing* (HLB), também conhecido como *greening*, a necessidade de aumentar a produtividade dos pomares e a busca

pela estabilização da renda dos produtores. Esses problemas, juntamente com a pressão de mercados internacionais como o da China, exigem uma adaptação do setor para que continue competitivo e sustentável. Além disso é crucial planejar a produção de forma a atender à demanda durante todo o ano, evitando picos sazonais de oferta.

Estudos recentes com citricultores paulistas destacam a dificuldade do setor em manter sua rentabilidade. Pesquisa realizada por Turra *et al.* (2015) revela que fatores como preços baixos, altos custos de produção, a propagação do HLB e elevados níveis de endividamento tornam a citricultura economicamente inviável para cerca de 83% dos estabelecimentos analisados. Para enfrentar esses desafios, é recomendada a adoção de sistemas de produção que agreguem valor ao produto final, respeitem as normas ambientais e reduzam os custos de produção. Esse modelo pode facilitar o acesso a mercados que priorizam alimentos de alta qualidade e seguros, proporcionando uma remuneração mais atrativa para os produtores.

3.2 ÓLEOS ESSENCIAIS

3.2.1 Aspectos gerais dos óleos essenciais

Conforme descrito por Vitti e Brito (2003) os óleos essenciais são conhecidos desde séculos antes da era cristã, com registros históricos que indicam sua primeira obtenção e uso em países orientais como Egito, Pérsia, China e Índia. Contudo, foi apenas em meados do século XVIII que os conhecimentos técnicos sobre esses óleos começaram a se aprofundar, por meio de estudos voltados para sua caracterização química.

Conforme apontado por Pavela (2015), os óleos essenciais, também conhecidos como óleos voláteis, são produtos concentrados e voláteis com um odor característico, obtidos por processos físicos como a evaporação por arraste de vapor ou hidroevaporação. Eles são nomeados de acordo com o material vegetal de onde foram extraídos, como o "óleo essencial de cravo", proveniente do cravo. Em contraste, os óleos vegetais, compostos por ácidos graxos, não são voláteis, têm pouco ou nenhum odor e são geralmente extraídos com solventes apolares, como o hexano.

Segundo Bakkali *et al.*, (2008) os óleos essenciais podem ser produzidos por mais de 17.500 espécies de plantas aromáticas pertencentes, principalmente, às seguintes famílias botânicas: Asteraceae, Apiaceae, Lauraceae, Lamiaceae, Myrtaceae e Rutaceae. Os óleos essenciais podem ser sintetizados nas plantas pelos canais secretores, bolsas secretoras ou células secretoras dentro dos vacúolos e também podem ser produzidos pelas papilas

epidérmicas ou pelos tricomas glandulares (Asbahani *et al.*, 2015). Deste modo, os óleos voláteis estão presentes em diferentes partes das plantas, como flores, folhas, caules, raízes, rizomas, frutos e sementes.

Os óleos essenciais são definidos pela International Standard Organization (ISO) como produtos obtidos a partir de partes das plantas, provenientes da evaporação por arraste com vapor d'agua, bem como produtos obtidos por expressão dos pericarpos de frutos cítricos. Segundo Bakkali *et al.*, (2018), os óleos essenciais são amplamente utilizados por suas fragrâncias e propriedades medicinais. Na Tabela 1, descrevem-se os principais tipos de óleos essenciais e suas respectivas aplicações.

Tabela 1 - Principais tipos de óleos essenciais e suas respectivas aplicações.

Óleo Essencial	Aplicação
Alecrim	Cansaço mental, falta de memória, dificuldade de concentração, dor de cabeça, enxaqueca, dores musculares e dores articulares.
Lavanda	Excesso de estresse, dor de cabeça, resfriados, insônia e problemas respiratórios.
Canela	Cansaço físico ou mental, tonturas, irritabilidade, dor de cabeça, falta de concentração, cólicas menstruais e dificuldade em relaxar.
Bergamota	Bergamota: Excesso de estresse, depressão, ansiedade, infecções da pele, má digestão.
Camomila	Excesso de estresse, tensão muscular, depressão e inflamação do sistema urinário.
Eucalipto	Problemas respiratórios, dor de cabeça, enxaqueca, dores musculares, febre e tensão muscular.
Limão	Falta de concentração, ansiedade, excesso de estresse, falta de energia, sistema imune enfraquecido, dor de cabeça, má digestão e febre.

Adaptado de: www.tuasaude.com/aromaterapia (2024).

3.2.2 Aspectos físico-químicos dos óleos essenciais

Os óleos essenciais são misturas complexas de compostos químicos com características voláteis, lipofílicas, geralmente odoríferas e líquidas. Podem estar presentes em um só órgão ou em toda a planta, sendo sintetizados em diferentes órgãos e armazenados em células

secretoras, cavidades, células epidérmicas e tricomas. Geralmente, possuem densidade menor que a da água e são solúveis em compostos orgânicos (Bakkali *et al.*, 2008).

A composição química dos óleos essenciais é fortemente influenciada pelo ambiente e pelo tipo de cultivo ao qual o vegetal é submetido, especialmente nas espécies cuja estocagem ocorre em regiões mais superficiais (Maciel *et al.*, 2002). Os óleos podem conter cerca de 20 a 60 componentes em diferentes concentrações, sendo que dois ou três componentes principais, que representam de 20 a 70% do óleo, caracterizam suas propriedades biológicas. Esses componentes principais podem ser classificados em dois grupos: terpenos e substâncias fenilpropanóides (Bakkali *et al.*, 2008).

Quimicamente, os óleos essenciais são constituídos por substâncias de diferentes classes químicas funcionais. Podem incluir substâncias nitrogenadas como aminas e amidas alifáticas e aromáticas, compostos fenólicos como os fenilpropanóides (cinâmicos) ou cumarínicos, e compostos sulfurados, principalmente derivados alílicos. Entretanto, a predominância é dos compostos terpenoídicos, como monoterpenoides, sesquiterpenoides e, ocasionalmente, diterpenoides mais voláteis (Bakkali *et al.*, 2008).

Segundo Pavela (2015), os óleos essenciais geralmente são constituídos por uma mistura de monoterpenos, sesquiterpenos e compostos aromáticos. Os monoterpenos, que são terpenos constituídos por duas unidades de isoprenos (dez carbonos), e os sesquiterpenos, constituídos por três unidades de isoprenos (quinze carbonos), formam cerca de 90% da composição dos óleos essenciais. Essas moléculas permitem uma grande variedade de estruturas (acíclica, monocíclica, bicíclica) e apresentam várias funções orgânicas, como hidrocarbonetos, álcoois, aldeídos, cetonas, éteres e fenóis.

Segundo Bakkali *et al.*, (2018) a variabilidade da composição química dos óleos essenciais está diretamente relacionada aos fatores ambientais e às condições de cultivo, que influenciam significativamente as propriedades sensoriais e biológicas desses óleos. A presença predominante de monoterpenos e sesquiterpenos, juntamente com a menor frequência de compostos aromáticos, resulta em uma ampla gama de aplicações para os óleos essenciais nas indústrias cosmética, alimentícia e farmacêutica, devido às suas propriedades aromáticas, terapêuticas e funcionais.

Os compostos bioativos presentes em espécies do gênero *Citrus*, em especial na laranjapera (*Citrus sinensis* L. Osbeck), englobam diferentes classes químicas, entre as quais se destacam os alcaloides, associados a atividades biológicas diversas; os flavonoides, reconhecidos pelo seu papel antioxidante e fotoprotetor; e os terpenos, que constituem a principal fração dos óleos essenciais cítricos, responsáveis por suas propriedades aromáticas e bioativas. Além disso, outras substâncias bioativas, como resinas, saponinas, taninos e polissacarídeos, também podem estar presentes e contribuir para a complexidade química da biomassa vegetal. A compreensão dessas classes de compostos é fundamental para elucidar a composição e as potenciais aplicações dos óleos essenciais da casca da laranja-pera, consolidando seu valor como recurso natural de interesse agroindustrial e farmacêutico.

3.2.2.1 Alcaloides

Os alcaloides são os principais compostos nitrogenados e são encontrados em aproximadamente 20% das espécies de plantas vasculares, mais frequentes em dicotiledôneas herbáceas e em poucas monocotiledôneas e gimnospermas (Pagare *et al.*, 2015). Eles possuem uma ampla gama de efeitos biológicos e são utilizados na produção de medicamentos. Os alcaloides são compostos orgânicos cíclicos que possuem pelo menos um átomo de nitrogênio no seu anel. Na sua grande maioria os alcaloides possuem caráter alcalino, pois a presença do átomo de nitrogênio representa um par de elétrons não compartilhados. Os alcaloides são sintetizados no retículo endoplasmático, concentrando-se, em seguida, nos vacúolos e, dessa forma, não aparecem em células jovens. Essa classe de compostos do metabolismo secundário é famosa pela presença de substâncias que possuem acentuado efeito no sistema nervoso, sendo muitas delas largamente utilizadas como venenos ou alucinógenos.

3.2.2.2 Flavonoides

Os flavonoides são compostos fenólicos que incluem um grande número de substâncias coloridas. O grupo mais comum dos flavonoides pigmentados consiste das antocianinas que tem importância como atrativo para polinizadores e dispersores de sementes. A síntese de flavonoides é intensificada em situações que favoreçam o estresse oxidativo, tanto abiótico quanto biótico Antes da produção de espécies reativas do oxigênio (ROS), os flavonoides possuem a capacidade de absorver a energia de comprimentos de onda mais energéticos (UV-B e UV-A) inibindo sua produção (Kumar; Pandey, 2013).

3.2.2.3 Terpenos

Conforme descrito em Kortbeek *et al.*, (2019), os terpenos são hidrocarbonetos naturais produzidos por uma grande variedade de animais e plantas. Eles servem de base para muitas estruturas com diversas funções no metabolismo especializado e primário, variando de

moléculas bastante pequenas e voláteis (por exemplo, mono e sesquiterpenos) até hormônios (como, brassinosteróides, ácido abscísico, giberelinas) e componentes celulares estruturais, como os pigmentos carotenoides. Os terpenos representam mais de 55.000 moléculas descobertas, constituindo a maior e mais complexa classe de produtos naturais. Eles são classificados com base em unidades de cinco carbonos (C5). Os diferentes terpenos incluem hemiterpenos (C5), monoterpenos (C10), sesquiterpenos (C15), diterpenos (C20), sesterpenos (C25), triterpenos (C30), tetraterpenos (C40) e politerpenos (> C40).

3.2.2.4 Outras substâncias bioativas

Conforme descrito por Schenkel *et al.*, (2001), além dos óleos essenciais, terpenos, flavonoides e alcaloides, a biomassa vegetal pode ser uma fonte rica de diversas outras substâncias bioativas. Estes compostos incluem resinas, saponinas, taninos e polissacarídeos. As resinas são misturas complexas de compostos orgânicos secretados por plantas. Elas possuem propriedades adesivas, protetoras e curativas, sendo utilizadas em diversas aplicações industriais e terapêuticas. Resinas são frequentemente encontradas em plantas como pinus e árvores de incenso. Outro composto proveniente da etapa de extração de matéria orgânica vegetal são as saponinas. As saponinas são glicosídeos de esteróides ou de terpenos policíclicos. É uma estrutura com caráter anfifílico, parte da estrutura com característica lipofílica (triterpeno ou esteróide) e outra hidrofílica (açúcares). Na Tabela 2, são apresentados os principais constituintes de alguns dos óleos essenciais provenientes das cascas de frutas cítricas.

Tabela 2 - Principais compostos bioativos presentes em óleos essenciais de Citrus

Óleo Essencial	Principais Constituintes
Bergamota	Ésteres de álcoois monoterpênicos, monoterpenos (incluindo o limoneno) e monoterpenóides.
Casca de laranja	Monoterpenos (incluindo o limoneno), sesquiterpenóides, sesquiterpeno, monoterpenoides e outros compostos (octanal).
Limão	Monoterpenos (incluindo o limoneno), monoterpenoides e outros compostos (neril acetado, geranil acetato, nonanal.
Toranja	Monoterpenos (incluindo o limoneno), monoterpenoides, sesquiterpenoides e outros compostos (octanal).

Fonte: Adaptado de Margetts (2005)

3.2.3 Aplicações comerciais dos óleos essenciais

Os óleos essenciais são produtos naturais que vêm ganhando destaque devido às suas propriedades físico-químicas e funcionais, além de serem ambientalmente sustentáveis. Essa versatilidade os torna uma alternativa atraente aos aditivos sintéticos em diversas indústrias, como a farmacêutica, sanitária, cosmética, agrícola e alimentícia (Bakkali *et al.*, 2008).

Os óleos essenciais são amplamente utilizados na indústria de aromatizantes devido à sua capacidade de produzir uma vasta gama de aromas e fragrâncias. Componentes como o dlimoneno são comuns em produtos de higiene e perfumes, proporcionando aromas frescos e cítricos. Além disso, esses óleos podem ser incorporados em produtos para melhorar sua atratividade olfativa ou para mascarar odores indesejados, o que aumenta a sua aceitação pelo consumidor (Bakkali *et al.*, 2008).

Na indústria farmacêutica e fitoterápica, os óleos essenciais são valorizados por suas propriedades terapêuticas. Muitos óleos essenciais têm sido usados tradicionalmente em tratamentos fitoterápicos e são ingredientes ativos em medicamentos naturais. Eles possuem propriedades anti-inflamatórias, analgésicas e sedativas, o que os torna úteis no alívio de uma variedade de sintomas, desde dores musculares até distúrbios do sono (Bakkali *et al.*, 2008). A Tabela 3 apresenta os principais óleos essenciais utilizados comercialmente.

Tabela 3 - Principais óleos essenciais utilizados comercialmente

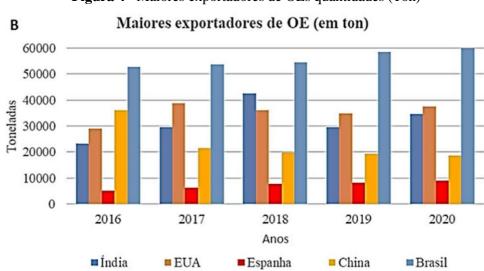
Natureza do óleo essencial	Espécie da qual é obtido
Cânfora	Cinnamomum camphora (L.) J. Presl.
Cedro	Chamaecyparis funebris (Endl.) Franco
Citronela	Cymbopogon nardus (L.) Rendle.
Coentro	Coriandrum sativum L.
Cravo-da-índia	Syzygium aromaticum (L.) Merr. E L. M. Perry.
Eucalipto (tipo cineol)	Eucalyptus globulus Labill.
Eucalipto (tipo citronela)	Eucalyptus citriodora Hook.
Hortelã-pimenta	Mentha x piperita L.
Hortelão-verde (nativa)	Mentha spicata L.
Laranja	Citrus sinensis (L.) Osbeck.
Lima	Citrus aurantifolia (Christm. & Panz.) Swingle.
Limão	Citrus limon (L.) N. L. Burm.
Menta japonesa	Mentha arvensis L. f. piperascens Malinv. ex Holme.
Toranja	Citrus paradisi Macfady,

Fonte: Adaptado de Bizzo; Hovell; Rezende (2009).

Segundo Stintzing (2013), os óleos essenciais têm aplicações significativas como inseticidas naturais. Certos compostos encontrados nesses óleos, como o citronelal e o eucaliptol, são eficazes em repelir insetos e podem ser usados como alternativas aos pesticidas sintéticos. Esses produtos são particularmente atraentes devido à crescente preocupação com os impactos ambientais e à saúde humana causados pelos pesticidas químicos. O autor ainda aponta que a atividade antimicrobiana dos óleos essenciais é outra área de grande interesse comercial. Eles são eficazes contra uma ampla gama de microrganismos, incluindo bactérias, fungos e vírus. Essa propriedade torna os óleos essenciais ideais para uso em desinfetantes, conservantes naturais e tratamentos para infecções, oferecendo uma alternativa natural aos

antibióticos e fungicidas sintéticos, que muitas vezes contribuem para o desenvolvimento de resistência microbiana.

Segundo Bakkali *et al.*, (2008), na indústria alimentícia, os óleos essenciais são utilizados como saborizantes e conservantes. Eles não apenas adicionam sabor e aroma aos alimentos, mas também ajudam a preservar a frescura e a segurança dos produtos alimentícios devido às suas propriedades antioxidantes e antimicrobianas. Isso é particularmente importante em um mercado onde a demanda por alimentos naturais e sem conservantes artificiais está em constante crescimento.


3.2.4 Aspectos econômicos dos óleos essenciais

Rezende *et al.* (2022) destacam que o mercado internacional de óleos essenciais (OE) 2021 foi estimado em US\$ 10,3 bilhões, correspondentes a 253 mil toneladas, com previsão de crescimento constante, devendo atingir US\$ 16 bilhões e 345 mil toneladas em 2026, sendo que cerca de 80% do valor refere-se a óleos essenciais propriamente ditos, segundo a ISO 9235. Os principais países produtores e exportadores em valores são Índia, EUA, França, China e Brasil, enquanto, em volume exportado, a Espanha substitui a França entre os cinco primeiros. Historicamente, os EUA lideraram as exportações em valores, mas desde 2017 a Índia ocupa a primeira posição, principalmente pela produção de OE de *Mentha arvensis*. O Brasil mantém a liderança em volume exportado há mais de 20 anos, principalmente pelo óleo essencial de laranja, coproduto da indústria de suco, posicionando-se em quinto lugar em valor. As figuras 3 e 4 apresentam, respectivamente, os maiores exportadores mundiais em valores e em toneladas entre 2016 e 2020.

Maiores exportadores de OE (em milhões USS) A 1200 1000 Milhões de US\$ 800 600 400 200 0 2016 2017 2018 2019 2020 Anos ■ Índia ■ EUA China ■ Brasil ■ França

Figura 3 - Maiores exportadores de OEs em valores

Fonte: ITC Trade Map (2021).

Figura 4 - Maiores exportadores de OEs quantidades (Ton)

Fonte: ITC Trade Map (2021).

De acordo com informações da International Federation of Essential Oils and Aroma Trades (IFEAT), a produção mundial de óleo essencial extraído da casca da laranja ultrapassou 50.000 toneladas em 2018, conforme apresentado na Figura 4. Esse valor é cerca de 50% superior ao da Menta japonesa (Mentha arvensis L.) e quase dez vezes maior que o do Eucalipto (Eucalyptus globulus Labill.). A lista também inclui outros óleos essenciais com grande participação no mercado global, como os provenientes do Limão siciliano, Hortelã-pimenta e Cravo-da-índia.

O estudo ainda aponta que substituição de produtos sintéticos por naturais segue uma tendência contínua, principalmente impulsionada por consumidores de países do hemisfério

norte, que preferem produtos de origem natural. Essa demanda tem influenciado mudanças nos ingredientes usados em alimentos e bebidas, o que impacta positivamente o mercado de óleos essenciais. Porém, a produção de matérias-primas para óleos essenciais não tem acompanhado o crescimento da demanda. A principal preocupação é a diminuição da oferta desses insumos. A Tabela 4 apresenta os principais óleos essenciais no mercado internacional (em 2018) e suas respectivas produções anuais em toneladas.

Tabela 4 - Principais óleos essenciais no mercado internacional (em 2018)

Óleo Essencial	Quantidade (ton)
Laranja (Citrus sinensis (L.) Osbeck e outras)	50.000 - 55.000
Menta japonesa (Mentha arvensis L.)	25.000 - 40.000
Eucalipto (Eucalyptus globulus Labill.)	5.000 - 11.000
Limão siciliano (Citrus limon (L.) Osbeck)	7.000 - 7.500
Hortelã-pimenta (<i>Mentha x piperita L</i> .)	4.000 - 4.500
Cravo, folhas (Syzygium aromaticum (L.) Myrtaceae)	2.500 - 4.000
Menta (Mentha spicata L.)	2.500 - 4.000
Citronela (Cymbopogon winterianus Jowitt ex Bor)	1.500-3.000

Fonte: Adaptado de IFEAT, 2019.

3.2.4.1 A participação do Brasil no mercado dos Óleos Essenciais

Segundo dados dos Trade Map (2021) o Brasil ocupa o primeiro lugar mundial na produção e exportação tanto de suco quanto de óleo essencial de laranja, predominantemente da espécie *Citrus sinensis*, além de outras. Segundo o IBGE (2018) foram produzidas cerca de 154,6 mil toneladas de óleos essenciais de laranja, o que correspondeu a R\$ 1,5 bilhões ou US\$ 418 milhões. Esses dados abrangem tanto o óleo extraído por prensagem a frio do fruto (óleo essencial de laranja) quanto o obtido por evaporação das folhas e galhos, conhecido como óleo essencial de petitgrain, que representa aproximadamente 0,1% do total. Na Figura 5 é apresentada a produção de óleos essenciais no Brasil entre 2014 e 2018. Observa-se que houve

um grande aumento no volume produzido deste OE entre 2015 e 2016, indo de 54 para 145 mil toneladas, seguido de pequena elevação em 2017 e 2018. Essa variação, entretanto, não se refletiu nos volumes exportados para o mesmo período.

Produção de OE no Brasil (mil toneladas) 160 140 120 Foneladas x 1000 100 80 60 20 2010 2014 2015 2016 2017 ■ 2093.2270 Óleos essenciais, de limão ou de outros cítricos, exceto de lara ■ 2093.2280 Óleos essenciais, de laranja ■ 2093.2295 Óleos essenciais, exceto de citricos Fonte: IBGE

Figura 5 - Produção de OE no Brasil 2014 – 2018

Fonte: IBGE, 2018.

3.2.5 Óleos essenciais provenientes da casca de laranja

De acordo com Pearson (1993) esses óleos são amplamente utilizados em diversas indústrias, classificando-se principalmente em três categorias conforme seu uso e composição: alimentícia, cosmética e farmacêutica. O óleo essencial de laranja é predominantemente composto pelo monoterpeno d-limoneno, que constitui mais de 90% do óleo extraído. Além do limoneno, outros compostos presentes em menor quantidade, como o mirceno e o alfa-pineno, contribuem para suas propriedades sensoriais e funcionais.

A Tabela 5 apresenta as especificações do óleo essencial de laranja rico em d-limoneno segundo os dados adaptados de Silva (2023).

Tabela 5 - Especificações para o óleo essencial de laranja rico em d-limoneno

Características físico-químicas	Valores recomendados
Densidade relativa (g/mL a 20°C)	0,840 - 0,845
Índice de refração (20°C)	1,465 - 1,485
Solubilidade em água (20°C)	Insolúvel em água
Solubilidade em etanol 70% v/v (20°C)	1 vol em 5 vols
Aldeído (GC em %)	0,4 – 0,7

Fonte: Adaptado de Silva (2023).

A extração do óleo essencial de laranja pode variar em rendimento, geralmente entre 0,2% e 0,4% em relação à massa das cascas frescas. Fatores como a variedade da laranja, as condições climáticas, o tipo de manejo agrícola e as condições de extração influenciam significativamente o rendimento e a composição do óleo (Vitti; Brito, 2003). Estudos indicam que a estação do ano com temperaturas mais altas e maior exposição ao sol favorece a síntese de terpenos, aumentando o rendimento do óleo essencial (Jemâa *et al.*, 2012).

3.2.5.1 Funcionalidade dos óleos essenciais da casca de laranja e o d-limoneno

Segundo Bakkali *et al.*, (2008), além dessas aplicações, o óleo essencial de laranja possui atividade antimicrobiana, inibindo o crescimento de bactérias, fungos e outros patógenos, o que o torna um substituto natural potencialmente eficaz para conservantes sintéticos. Com a crescente preocupação em relação à resistência aos antibióticos, há um interesse crescente na utilização de óleos essenciais como alternativas naturais aos medicamentos sintéticos.

Presente em altas concentrações no óleo essencial proveniente da casca de laranja, o dlimoneno é um monoterpeno presente na maioria dos óleos essenciais de plantas aromáticas, sendo amplamente estudado por suas bioatividades, como a atividade antimicrobiana. Além disso, é utilizado na fabricação de diversos produtos, incluindo cosméticos e aromatizantes (Ferrarini *et al.*, 2008). A fórmula química estrutural do d-limoneno e do l-limoneno é apresentada na Figura 6.

Figura 6 - Fórmula estrutural plana do d-limoneno (à esquerda) e l-limoneno (à direita)

$$H_3C$$
 CH_3
 CH_3
 CH_3
 H_3C
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3
 CH_2
 CH_3
 CH_3

Fonte: Adaptado de scienceinschool.org (2022).

O d-limoneno e o l-limoneno são isômeros do limoneno, um monoterpeno amplamente encontrado em óleos essenciais de frutas cítricas, como a laranja. A principal diferença entre os dois isômeros está na sua estrutura molecular e nas propriedades ópticas, ou seja, na forma como eles interagem com a luz polarizada. O d-limoneno (dextrógiro) gira a luz polarizada para a direita e é o isômero mais abundante nos óleos essenciais de laranja, sendo frequentemente associado a um aroma fresco e cítrico, comumente utilizado em produtos de limpeza e cosméticos (Bakkali *et al.*, 2008). Em contraste, o l-limoneno (levógiro) gira a luz polarizada para a esquerda e, embora presente em menores quantidades nas fontes naturais, também possui propriedades interessantes (Burt, 2004). Apesar dessa diferença ótica, ambos os isômeros compartilham muitas propriedades químicas e biológicas, embora possam ter variações no impacto sensorial e nas aplicações. Por exemplo, o d-limoneno é mais comumente usado na indústria de fragrâncias e como aromatizante, enquanto o l-limoneno pode ter efeitos terapêuticos e biológicos distintos (Burt, 2004).

3.2.5.2 Mercado dos óleos essenciais de laranja

Segundo dados do *Comex Stat* (2022), nos últimos dez anos, aproximadamente 95% da quantidade de óleos essenciais exportados pelo Brasil foi de óleo essencial de laranja, representando entre 80% e 90% do valor total arrecadado com essas exportações. O volume exportado manteve-se relativamente estável, variando entre 25 e 31 mil toneladas anuais. A

única exceção foi em 2020, quando as exportações aumentaram significativamente, chegando a 35 mil toneladas.

O estudo ainda aponta que o preço por quilograma, entretanto, apresentou grande variação ao longo da década, partindo de US\$ 4,6/kg em 2011, alcançando o pico de US\$ 8,9/kg entre 2017 e 2018, e retornando ao patamar de US\$ 4,6/kg em 2020. Essas flutuações tiveram impacto direto nos valores arrecadados com as exportações e, por consequência, no saldo da balança comercial de óleos essenciais. Em termos de produção interna, os dados mostram um crescimento no volume produzido entre 2015 e 2016, passando de 54 mil para 145 mil toneladas, seguido por um leve aumento em 2017 e 2018.

Os dados do Comex Stat (2022), mostram que a produção de óleo essencial de laranja no Brasil é concentrada principalmente na região Sudeste, com destaque para o estado de São Paulo, que lidera a produção nacional de laranjas. Apesar disso, a maior parte da produção de óleo essencial é destinada à exportação, com mercados principais na América do Norte e Europa. A demanda crescente e a valorização dos produtos naturais colocam o Brasil em uma posição estratégica para expandir sua participação no mercado global de óleos essenciais. No entanto, para alcançar esse potencial, é necessário investir em tecnologias de extração mais eficientes e sustentáveis, como a extração assistida por ultrassom, que pode aumentar o rendimento e a qualidade dos óleos essenciais extraídos. A Figura 7 apresenta as exportações de OE de laranja na última década.

Figura 7 - Exportações de OE de laranja na última década **OE Laranja - Exportações**

3.3 PROCESSOS DE EXTRAÇÃO DE ÓLEOS ESSENCIAIS

De acordo com Rassem *et al.*, (2016), os métodos convencionais são muito utilizados pelas indústrias, uma vez que se utiliza de tecnologia simples para a extração dos óleos essenciais. Entre os métodos convencionais mais aplicados atualmente estão a hidroevaporação, arraste de vapor d'água, extração por solvente e prensagem a frio. Esses métodos variam em termos de princípios operacionais, equipamentos utilizados e adequação para diferentes tipos de biomassa e compostos voláteis. Esse capítulo consiste em uma revisão de literatura sobre os principais processos utilizados para a extração de óleos essenciais provenientes de matéria vegetal.

3.3.1 Extração por evaporação a vapor

Trata-se de um método que separa substâncias imiscíveis com diferença de volatilidade. Para isso, há a geração de vapor d'água que entra em contato com a matéria-prima vegetal, forçando a quebra intramolecular e ocasionando a vaporização e o arraste dos compostos

voláteis. Em seguida, os vapores são resfriados e liquefeitos nos condensadores e, por fim, há a separação do óleo e da água residual. Consiste em um método amplamente utilizado por indústrias para extrações de óleos essenciais, já que se apresenta como simples e economicamente viável quando comparado aos demais métodos. Normalmente este método é empregado para a obtenção de óleos de plantas condimentares medicinais e aromáticas (Leal, 2018).

Conforme apontado por Grosso *et al.* (2011), a extração por evaporação a vapor é amplamente utilizada na extração de óleos essenciais de plantas aromáticas. Nesse processo, o vapor d'água é empregado para volatilizar os componentes aromáticos das plantas, que são então condensados e coletados. A técnica é preferida em diversas aplicações por sua eficácia e pela capacidade de preservar os compostos bioativos das plantas. A evaporação a vapor consiste na passagem de vapor d'água quente pelo material vegetal, o que faz com que os óleos essenciais sejam liberados das glândulas e ductos das plantas. A diferença de densidade entre o óleo e a água permite a fácil separação dos dois componentes.

A evaporação a vapor apresenta várias vantagens. É um método eficiente e relativamente simples, não requer o uso de solventes químicos, o que o torna ambientalmente amigável. A técnica permite a extração de óleos essenciais puros, preservando suas propriedades aromáticas e terapêuticas. No entanto, a evaporação a vapor também tem suas limitações. A exposição prolongada ao calor pode degradar alguns compostos sensíveis ao calor, e a eficiência da extração pode ser menor para plantas com baixo teor de óleos essenciais.

3.3.2 Extração por hidrodestilação

Conforme descrito por Biasi e Deschamps (2009), na hidrodestilação, a matéria-prima vegetal é totalmente imersa em água dentro do extrator e aquecida até o ponto de ebulição. O vapor gerado exerce pressão sobre as paredes celulares, facilitando a liberação e evaporação dos óleos essenciais presentes nas células da planta. Esse vapor, que contém uma mistura de água e óleo, é conduzido a um condensador, onde é resfriado. Como a água e o óleo essencial são imiscíveis, formam-se duas fases distintas, que podem ser facilmente separadas por decantação.

Este método destaca-se por sua simplicidade e facilidade de aplicação, além de ser bastante eficiente, o que o torna amplamente utilizado em laboratórios. Uma vantagem adicional é a menor perda de compostos sensíveis a altas temperaturas, ainda que o processo seja relativamente lento e apresente rendimento limitado (Silveira *et al.*, 2012).

A hidrodestilação, segundo Pinheiro (2003) é especialmente adequada para a extração de óleos essenciais de flores e pétalas, pois evita a compactação da matéria-prima vegetal, o que preserva a qualidade do óleo extraído. A hidroevaporação, que utiliza água como solvente, apresenta diversas vantagens em relação a outros métodos de extração de óleos essenciais. A água é um solvente universal, ambientalmente amigável e não tóxico, o que torna o processo seguro tanto para os operadores quanto para o meio ambiente. Além disso, a água não deixa resíduos tóxicos no óleo essencial extraído, garantindo a pureza do produto final. Uma das principais vantagens de usar água como solvente é seu custo-efetividade. A Figura 8 mostra um típico aparelho utilizado para a extração de óleos essenciais por hidroevaporação, o aparelho Clevenger.

Figura 8 - Aparelho de Clevenger utilizado para Hidrodestilação

Fonte: Adaptado Silva et al. (2005).

Sendo um recurso abundante e de baixo custo, a água reduz significativamente os custos operacionais e de materiais, tornando o processo de hidrodestilação acessível para uma ampla gama de aplicações industriais (Grosso *et al.*, 2011). Guenther (1972) completa que a hidrodestilação é particularmente eficaz para plantas que contêm compostos sensíveis ao calor, pois a presença de água ajuda a regular a temperatura e protege os compostos voláteis da decomposição térmica, resultando em um óleo essencial de alta qualidade.

3.3.3 Extração por CO₂ em estado supercrítico

Sobre o processo de extração por dióxido de carbono (CO₂) em estado supercrítico, Biasi e Deschamps (2009, p. 320) o descrevem como "muito rápido, eficiente e capaz de extrair óleos totalmente livres de solventes". O CO₂ supercrítico é obtido em condições de alta pressão e temperatura acima de 31°C. Com estas condições, o CO₂ alcança um estado em que sua viscosidade corresponde a de um gás, mas sua capacidade de solubilidade é igual a de um líquido. Um fluido supercrítico (SCF) é uma substância que se encontra acima da sua temperatura e pressão críticas, onde as fases líquida e gasosa se misturam indistintamente. Em outras palavras, é um estado termodinâmico em que a substância não se encontra nem como líquido, nem como gás, mas sim como um fluido com propriedades intermediárias entre ambas as fases.

Segundo McHugh (1994), a extração com CO₂ supercrítico apresenta várias vantagens. É um método eficiente que produz extratos de alta pureza e sem resíduos de solventes tóxicos. O CO₂ é inerte, não inflamável e pode ser reciclado no sistema, tornando o processo ambientalmente amigável. Além disso, a técnica permite um controle preciso das condições de extração, como temperatura e pressão, o que possibilita a seletividade na extração de diferentes compostos.

Embora a extração com CO₂ supercrítico seja eficaz, ela também apresenta limitações. O alto custo inicial dos equipamentos e a necessidade de um controle rigoroso dos parâmetros operacionais podem representar desafios. Além disso, essa técnica pode não ser ideal para a extração de compostos altamente polares, que possuem baixa solubilidade no CO₂ supercrítico (Reverchon; De Marco, 2006).

3.3.4 Extração Assistida por Ultrasom

A extração por ultrassom é uma técnica que acelera o processo de extração, sendo comumente aplicada em métodos como a hidroevaporação e a extração com solvente. Esse método assistido por ultrassom permite a extração seletiva dos óleos essenciais e pode acelerar sua obtenção quando combinado com outros métodos. No processo, a matéria-prima vegetal é imersa em água ou solvente e exposta a ondas de ultrassom (20 kHz - 1 MHz), o que facilita a decomposição das paredes e membranas celulares, liberando os óleos essenciais. Esses compostos podem ser extraídos por difusão e lavagem. Embora o investimento inicial necessário seja relativamente alto em comparação com outros métodos, a extração por

ultrassom oferece vantagens como o aumento do rendimento, redução no tempo de operação, além da diminuição do uso de solventes orgânicos e de efeitos adversos nos compostos extraídos. Essa técnica tem se mostrado eficaz também na extração de óleos essenciais de sementes (Vinaroru, 2001).

3.3.5 Extração Assistida por Micro-ondas

O método de extração por micro-ondas sem solvente é caracterizado por realizar a evaporação a seco da matéria-prima vegetal através de micro-ondas à pressão atmosférica (Filly *et al.*, 2014). O aquecimento da matéria-prima vegetal faz com que o seu tecido extravase e se rompa, liberando os óleos essenciais presentes, que são então evaporados e destilados junto com a água já existente no vegetal (Li *et al.*, 2013). Este método oferece a vantagem de reduzir o tempo de extração em comparação com os métodos convencionais, além de proporcionar maior rendimento, seletividade e baixo custo operacional (Chan *et al.*, 2011). A ação das micro- ondas ocorre por meio de dois campos perpendiculares: o campo elétrico e o campo magnético, que interagem com as moléculas do material exposto, promovendo aquecimento através de rotação dipolar e condução iônica (Letelier; Budzinski, 1999).

A extração de óleos essenciais e compostos fenólicos das cascas de laranja, utilizando a técnica de micro-ondas, causa alterações significativas na estrutura celular da planta. A casca de laranja é formada por diversas camadas, como as glândulas de óleo, o parênquima, o albedo e o flavedo, que apresentam características morfológicas distintas e afetam diretamente o processo de extração. As glândulas de óleo, localizadas desde a superfície até o albedo, são particularmente influenciadas pela aplicação de micro-ondas, tornando-se esféricas e facilitando a liberação dos óleos essenciais. Esse método é potencializado pela evaporação da água presente nas células, gerando um aumento de pressão interna que leva à ruptura das membranas celulares e à liberação do conteúdo intracelular, incluindo os óleos essenciais. A Figura 9 apresenta as glândulas de óleo da casca de laranja em sua condição inicial, após a aplicação das micro-ondas, e após um processo de hidroevaporação.

CONDIÇÃO INICIAL APÓS APLICAÇÃO DAS MICROONDAS APÓS EXTRAÇÃO POR HIDROEVAPORAÇÃO

Figura 9 - Esquematização do efeito das micro-ondas sobre a estrutura de matrizes vegetais

Fonte: Adaptado de Angoy et al. (2020).

3.3.6 Extração por solvente

A extração de óleos vegetais por solventes orgânicos é uma técnica utilizada quando os métodos tradicionais, como a prensagem a frio, não são suficientes para obter o óleo desejado ou quando o material vegetal não tolera altas temperaturas (Sartor, 2009).

Nesse método, o material vegetal é colocado em contato com um solvente orgânico, que pode ser polar ou apolar, dependendo do tipo de óleo a ser extraído. Solventes apolares, como hexano, benzeno e éter de petróleo, são geralmente preferidos para a extração de óleos vegetais. Após um período de contato, a fase líquida, rica em óleo e solvente, é separada da fase sólida. Em seguida, o solvente é removido por evaporação, resultando na obtenção do óleo vegetal (Sartor, 2009; Silveira *et al.*, 2012).

O método de extração por solvente utiliza, geralmente, solventes apolares, como éter, éter de petróleo ou diclorometano; além de extraírem o óleo volátil, extraem também outras substâncias lipofílicas. Por essa razão, o produto assim obtido tem baixo valor comercial. Esse processo somente é empregado para a extração de óleo essencial em algumas indústrias de cosméticos (Simões; Spitzer, 2003).

Segundo Karne H. *et al.* (2023), o método de extração Soxhlet mostrou-se eficaz na obtenção de óleos essenciais das cascas de laranja e limão. Observou-se que as amostras de casca de laranja seca apresentaram menor rendimento em comparação às amostras frescas (*zest*), o que pode ser explicado pela volatilidade do limoneno, principal componente do óleo essencial, que se perde durante o aquecimento da casca. Além disso, verificou-se que o n-hexano foi um solvente mais eficiente para a extração dos óleos em comparação ao etanol, conforme demonstrado pelos ensaios realizados. O limoneno foi identificado como o constituinte majoritário em ambos os óleos, sendo responsável pelo aroma característico, com maior concentração no óleo extraído da casca de laranja.

Karne H. *et al.* (2023) complementou o estudo com a análise dos óleos essenciais por cromatografia gasosa com detector de ionização em chama (GC-FID) indicou que o limoneno é parte constituinte de 80% do óleo obtido da casca de laranja e em 70% do óleo extraído da casca de limão. A aplicação do método Soxhlet, aliada à caracterização por GC-FID, permitiu uma melhor compreensão da composição química desses óleos. O maior teor de limoneno, foi registrado na extração da casca de laranja com hexano. A Tabela 6 apresenta os resultados dos testes realizados.

Tabela 6 - Tabela de Comparação entre os testes de Extração Soxhlet com as Cascas de Laranja

EXTRAÇÃO PELO MÉTODO SOXHLET					
	30 g	50 g	51 g	52 g	53 g
Base Vegetal	<i>Zest</i> de Laranja				
Solvente (mL)	300 mL				
	Hexano	Hexano	Hexano	Hexano	Etanol
Tempo (min)	60,00	120,00	120,00	60,00	60,00
Temperatura (°C)	70,00	80,00	80,00	70,00	75,00
EVAPORAÇÃO					
Tempo (min)	60,00	60,00	60,00	70,00	60,00
Temperatura (°C)	70,00	80,00	80,00	70,00	70,00
Quantidade de Hexano Separado (mL)	200,00	200,00	200,00	200,00	200,00
Densidade de Hexano (g/mL)	0,85	0,85	0,98	0,85	0,79
Densidade de Óleo Extraído (g/mL)	0,89	0,97	0,62	0,96	0,89
Quantidade de Óleo Extraído (g)	30,00	32,00	28,00	36,27	33,00
Rendimento da Extração (%)	100,00	64,00	56,00	72,54	66,00

Fonte: Adaptado de Karne H. et al. (2023).

Karne H. *et al.* (2023), apresenta em seu estudo, dados de rendimento de extração pelo método Soxhlet, ajustando o método de evaporação com o objetivo de realizar a remoção de uma parcela do solvente da solução e não mostra dados absolutos de rendimento da extração, contudo os dados publicados são de grande valia para os estudos na área.

3.3.7 Extração Enfleurage

O processo de extração conhecido como *enfleurage* baseia-se na capacidade de gorduras e óleos de absorver e reter compostos aromáticos sem modificá-los. Utilizado para a extração de óleos voláteis a partir de pétalas de flores, o método consiste em depositar as pétalas sobre uma camada de gordura à temperatura ambiente. Após certo período, as pétalas esgotadas são substituídas por novas, e o processo continua até que a gordura atinja saturação completa. Em seguida, a gordura saturada é tratada com álcool para separar o óleo volátil, que é então obtido pela evaporação do álcool a baixa temperatura, produzindo um óleo de elevado valor comercial (Simões; Spitzer, 2003).

Embora o *enfleurag*e tenha sido amplamente utilizado no passado, atualmente sua aplicação é restrita a algumas indústrias de perfumaria, particularmente para plantas com baixo teor de óleo e alto valor comercial. O processo gera duas frações: o absoluto, altamente valioso e nobre, com grau de impurezas ideal em torno de 1%, e o concreto, uma fração mais densa que contém restos de solventes e substâncias graxas pesadas, como parafinas e ácidos graxos. Por exemplo, para produzir 1 kg de absoluto de lótus (*Nelumbo nucifera*), cerca de 100.000 flores são necessárias, e o preço pode alcançar US\$ 10.000 por quilo, enquanto o concreto possui valor aproximado de US\$ 1.000 por kg (Corazza, 2002).

3.4 PROCESSAMENTO DA LARANJA EM ESCALA INDUSTRIAL

Além das metodologias tradicionais, que possuem uma vasta literatura, existe um processo que não é amplamente difundido no meio acadêmico e que, paradoxalmente, é o mais comumente utilizado em larga escala, para a extração do óleo essencial da casca da laranja – a extração por centrifugação. A empresa multinacional Tetra Pak® Group, de origem sueca, fundada em 1951, em Lund, que é lider mundial na fabricação de embalagens, apresenta um manual que detalha bem o processo de obtenção do suco de laranja, o Manual de Processamento de Suco de Laranja, de Ringblom (2017). Esse manual foi uma referência importante desse capítulo. A Figura 10 apresenta o fluxograma de processamento da laranja em uma linha convencional.

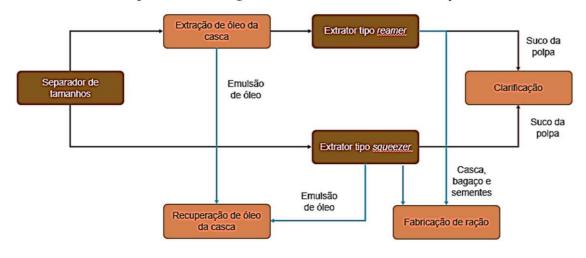


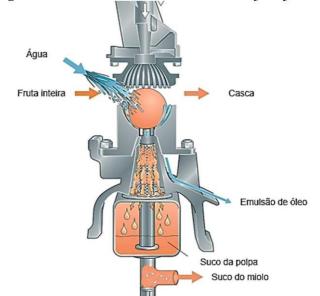
Figura 10 - Fluxograma do Processamento da Laranja

Fonte: Traduzido de orangebook.tetrapak.com (2025).

A extração envolve espremer ou raspar o suco de laranjas inteiras ou cortadas ao meio por meio de pressão mecânica. Após a lavagem final e inspeção, a fruta é separada de acordo com o tamanho em diferentes fluxos ou linhas. As laranjas individuais são direcionadas ao extrator mais adequado para alcançar o rendimento ótimo de suco. Como a operação de extração determina o rendimento e a qualidade do suco, o ajuste correto das condições operacionais do extrator é muito importante Ringblom (2017).

A operação de extração determina a qualidade e o rendimento do produto e, portanto, tem um grande efeito na economia total da operação de processamento da fruta. Uma vez que a fruta foi lavada e classificada (inspecionada), ela está pronta para o processo de extração. Para melhorar o desempenho do extrator, a fruta crua deve ser classificada de acordo com o tamanho, pois os extratores individuais são ajustados para lidar com frutas de apenas uma determinada faixa de tamanho Ringblom (2017).

O objetivo da etapa de extração de suco é obter a maior quantidade possível de suco da fruta, evitando que fragmentos, óleo e outros componentes da fruta entrem no suco. Esses componentes podem levar a um gosto amargo ou a outros defeitos durante o armazenamento do suco. Nesse contexto, o óleo essencial proveniente da casca de laranja, apesar de alto valor comercial, é visto na indústria de processamento de laranja como um coproduto Ringblom (2017).


3.4.1 Tipos de Extratores

De acordo com Ringblom (2017), existem mais comumente dois tipos de extratores que dominam nas plantas de processamento de laranja: o tipo *Squeezer* e o tipo *Reamer*. Ambos os sistemas de extração são dedicados a frutas cítricas, como o limão, a tangerina, a toranja, a laranja e dentro outros. A maioria do suco NFC (*Not From Concentrate*) produzido na Flórida é extraído usando extratores do tipo *Reamer*.

3.4.1.1 Extrator Squeezer

Segundo Ringblom (2017), a estrutura principal de um extrator inclui uma taça superior e uma inferior. As taças são equipadas com dedos de metal que se encaixam quando a taça superior é baixada sobre a inferior. Um cortador emerge pelo centro da taça inferior para perfurar a casca da laranja, permitindo que as partes internas da fruta sejam extraídas. Este cortador faz parte do tubo de peneira perfurado, frequentemente chamado de pré-finalizador.

A pressão descendente eventualmente faz com que a casca se quebre, se desintegre e passe pelos dedos de cada taça. O suco flui através do tubo de peneira até o coletor de suco. O material central é expelido da parte inferior do tubo de peneira através do tubo de orifício. Durante a última etapa do ciclo de extração, a medida que a casca é pressionada pelos dedos na taça, o óleo é liberado da casca. Os fragmentos de casca são lavados com água reciclada para extrair o óleo das glândulas oleíferas. O óleo é então expelido dos extratores na forma de uma emulsão com água. A Figura 11 apresenta o funcionamento de um extrator tipo *Squeezer*.

Figura 11 - Funcionamento de Extrator tipo *Squeezer*

Fonte: Adaptado de orangebook.tetrapak.com (2025).

O extrator do tipo *Squeezer* separa a fruta em quatro correntes principais de produtos em uma única etapa. Afirma-se que este método evita o contato entre o suco e o óleo, bem como entre o suco e a casca. Para operar este equipamento de maneira eficaz, é crucial selecionar o tamanho correto das taças e ajustar adequadamente a operação das taças e do cortador (Ringblom, 2017).

A capacidade de um extrator de cinco cabeças varia de acordo com a qualidade e o tamanho da fruta. A velocidade de operação padrão é de 100 rpm, processando cerca de 500 laranjas por minuto. Nem todas as taças serão utilizadas em todos os momentos: uma utilização de 90% é considerada alta. Uma capacidade típica para frutas de tamanho médio é de 5 toneladas por hora por extrator, o que corresponde a aproximadamente 2.500 litros por hora de suco (Ringblom, 2017).

Como os extratores processam um número fixo de laranjas por minuto, a capacidade de processamento da planta de cítricos é altamente sensível e depende do tamanho da fruta. Processar frutas pequenas (350 laranjas por caixa) resulta em uma taxa de suco de 1.500 litros por hora, em comparação com 3.000 litros por hora ao processar frutas grandes (180 laranjas por caixa). Essa diferença resulta em uma duplicação do volume de suco e dos coprodutos a serem manejados pelos equipamentos subsequentes. Esses dados destacam a importância da gestão correta das caixas de armazenamento e do tamanho da fruta, para operações eficientes na fábrica (Ringblom, 2017).

3.4.1.2 Extrator *Reamer*

O extrator tipo *Reamer* funciona com o mesmo princípio de um espremedor manual de cozinha, utilizado para fazer suco de laranja no café da manhã. Uma linha de extração é composta por vários extratores, e é muito importante que cada extrator seja ajustado para se adequar ao tamanho da fruta alimentada nele. A fruta é alimentada na roda de alimentação e cortada ao meio. As metades são orientadas e recolhidas em copos de borracha sintética montados em um sistema de correia contínua. Uma série de *Reamer*es de nylon (inserções em forma de cone que possuem ranhuras moldadas da ponta à base do *Reamer*) são montados em um carrossel giratório (Ringblom, 2017). A Figura 12 apresenta o funcionamento de um extrator tipo *Reamer*.

Fruta
Suco da polpa

Figura 12 - Funcionamento de Extrator tipo *Reamer*

Fonte: Adaptado de orangebook.tetrapak.com (2025).

O sistema de extração tipo *Reamer* requer duas etapas separadas para extrair suco e óleo da fruta. No entanto, a emulsão de óleo é frequentemente considerada mais limpa e mais fácil de centrifugar em comparação com outros tipos de sistema de recuperação de óleo, e o suco extraído tem menos contato com o óleo. No sistema de extração tipo *Reamer*, o óleo da casca é recuperado utilizando um sistema de extração de óleo separado, colocado a montante dos extratores de suco. Ele funciona com o princípio de perfurar as bolsas de óleo no flavedo e lavar o óleo para formar uma emulsão. Na primeira etapa do sistema de extração de óleo, a fruta inteira passa sobre uma série de rolos com pequenas projeções pontiagudas. As glândulas de óleo são perfuradas em vez de raspadas, causando assim pouco dano à casca. Portanto, a quantidade de material não oleoso removido junto com o óleo é mínima, o que, por sua vez, torna o fluxo de água, separado da emulsão, mais limpo e mais fácil de reciclar (Ringblom, 2017). A Figura 13, apresenta um sistema de extração de óleo da casca da laranja.

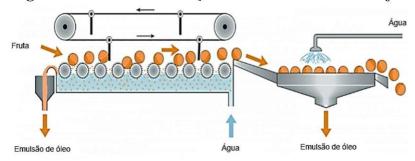


Figura 13 - Sistema de Extração de Óleo da Casca da Laranja

Fonte: orangebook.tetrapak.com (2025).

Os rolos que transportam a fruta são colocados em um banho de água e o óleo das glândulas perfuradas é carreado com a água. Após uma etapa de acabamento (peneiramento) para remover quaisquer grandes partículas de casca, a emulsão óleo-água pode ser concentrada e polida em uma série de centrífugas. A água é em grande parte reciclada (Ringblom, 2017).

3.4.2 Separação do Óleo Essencial da Casca da Laranja

Ringblom (2017) descreve que após a etapa inicial do processamento das laranjas, onde uma emulsão de óleo é gerada proveniente majoritariamente da casca, tem-se uma sub-etapa de extrema importância, a recuperação de óleo essencial da casca. Essa é uma etapa crucial que envolve a formação de uma emulsão de água e óleo. Essa separação é importante pois dois motivos: a separação do óleo essencial gera um coproduto de alto valor comercial e a necessidade de remover o óleo do suco, gerando um produto de maior qualidade.

Segundo a United States Standards for Grades of Orange Juice (2012), orgão de define os padrões de qualidade para o suco de laranja, o limite máximo aceitável de óleo residual no suco, para o mesmo ser classificado como "Grade A", é de 0,035%, de sua concentração total. Os limites de controle dentro da etapa normalmente variam dentre um limite inferior de 0,015% até um limite superior de 0,030%. Os sucos que excedem os limites de 0,035%, mas que não ultrapassam o limite superior de 0,055% (dentre outros parâmetros definidos como cor, sabor, brix e acidez) são classificados como "*Grade B*". A seguir Ringblom (2017) define as subetapas de separação do óleo da casca de laranja.

3.4.2.1 Formação da Emulsão

A emulsão de água e óleo é formada durante a etapa de extração da casca de laranja. Esta etapa ocorre em um sistema de extração de óleo separado, onde as bolsas de óleo na casca são perfurados e lavados com água para formar a emulsão. A casca da laranja é perfurada por pequenas projeções pontiagudas em rolos, liberando o óleo das glândulas. Em seguida, a casca perfurada é lavada com água, formando uma emulsão de óleo e água que contém partículas mínimas de material não oleoso (Ringblom, 2017).

3.4.2.2 Peneiramento Inicial

Inicialmente, essa etapa envolve uma etapa de filtração, utilizando um equipamento denominado *finisher*. Este atua como um método de peneiramento para remover partículas grandes de casca e outros fragmentos da fruta que não podem seguir para as centrífugas subsequentes (Ringblom, 2017).

3.4.2.3 Centrifugação Primária

Após a filtragem inicial, a emulsão de óleo, contendo aproximadamente 0,5% a 2,0% de óleo, é direcionada para a primeira centrífuga, também conhecida como *desludger* ou concentradora. Este equipamento é responsável por concentrar o óleo em uma proporção que varia de 70% a 90%, separando-o em três fases: óleo concentrado (fase leve), água (fase pesada) e material particulado residual (Ringblom, 2017).

A operação da centrífuga requer controle rigoroso, especialmente no que diz respeito à frequência de descarte dos sólidos acumulados. Se o descarte for realizado com demasiada frequência, há perdas significativas de produto; por outro lado, permitir que o espaço de acúmulo de sólidos se preencha completamente reduz a eficiência de separação. A água extraída durante este processo é frequentemente recirculada para o sistema de extração de óleo como água de pulverização. No entanto, é fundamental que uma parte dessa água seja descartada e substituída por água nova, pois o acúmulo contínuo pode causar problemas microbiológicos e aumentar a concentração de componentes indesejados, como pectina solúvel. Esse acúmulo reduz a eficiência da separação de óleo, diminuindo os rendimentos gerais do sistema (Ringblom, 2017).

3.4.2.4 Centrifugação Secundária

A água centrifugada contém ainda partículas microscópicas de óleo que não podem ser separadas pela centrífuga. À medida que esses níveis de óleo na água aumentam com a reciclagem contínua, a eficácia da extração do óleo da casca diminui, impactando negativamente a eficiência geral do sistema. A Figura 14 apresenta uma centrífuga para concentração de óleo da casca da laranja.

Figura 14 - Centrífuga de concentração de óleo da casca da laranja

Fonte: orangebook.tetrapak.com (2025).

A capacidade de reciclar água depende do tipo de sistema de extração de óleo utilizado e do desempenho das centrífugas. Em sistemas que produzem emulsões menos contaminadas, como aqueles associados a extratores do tipo *reamer*, os rendimentos de óleo são superiores e a possibilidade de reciclagem de água é maior, em comparação a sistemas de extração em etapa única, como os extratores do tipo *squeezer* (Ringblom, 2017).

3.4.2.5 Polimento do Óleo

Nessa etapa, o óleo é ainda mais purificado, alcançando níveis de concentração superiores a 99%. A quantidade de óleo nesse estágio é significativamente menor, representando apenas 1 a 2% da quantidade observado na centrifugação inicial, ou dos volumes manipulados em processos como clarificação de sucos ou remoção de óleo de suco simples. Devido à centrifugação prévia, o produto praticamente não contém partículas sólidas. Para capacidades menores, utiliza-se uma centrífuga de tambor sólido, na qual água e óleo são descarregados continuamente, enquanto resíduos acumulados nas bordas do tambor são removidos periodicamente. Em instalações maiores capacidades, emprega-se um polidor com ejeção de sólidos, no qual os materiais acumulados são descarregados uma ou duas vezes por hora. Em termos de rendimento, uma tonelada de frutas gera, em média, de 200 a 300 litros de emulsão para a primeira centrifugação e de 3 a 6 litros de óleo concentrado para o polidor (Ringblom, 2017).

3.4.2.6 Decantação e Armazenamento

Após o polimento, o óleo essencial é transferido para tanques de decantação, onde pode ser armazenado temporariamente antes de ser embalado ou processado adicionalmente. Durante a decantação, qualquer resíduo de água ou sólidos que permaneça no óleo é gradualmente separado por gravidade. O óleo purificado é armazenado em tanques de aço inoxidável para prevenir contaminação e degradação (Ringblom, 2017).

3.4.2.7 Winterização (*Dewaxing*)

Apesar de altamente purificado, o óleo polido ainda contém pequenas quantidades de cera dissolvida, derivada das cascas das frutas. Embora essa cera permaneça dissolvida a temperaturas acima de 15°C ou 20°C, a sua presença pode causar turbidez no produto em temperaturas mais baixas. Para evitar esse problema, realiza-se a "winterização", ou processo de desenceramento. Essa técnica consiste em precipitar a cera por meio de sua cristalização, seguida de sedimentação. O óleo é armazenado em tanques a temperaturas de 1°C ou inferiores, permitindo que a cera se separe e sedimente. Essa etapa pode levar 30 dias ou mais, embora temperaturas mais baixas possam acelerar a sedimentação. O óleo desencerado é então decantado, e grandes processadores frequentemente coletam o lodo de diversos tanques para centrifugação posterior, recuperando o óleo residual. Após a winterização, o óleo é embalado em tambores de 200 litros ou transportado em tanques refrigerados a temperatura de -10°C, sendo comercializado como *Cold-Pressed Oil* (CPO), ou *Cold-Pressed Peel Oil* (CPPO). Este óleo é amplamente utilizado como matéria-prima na indústria de fabricação de aromas, bem como em fábricas de concentrados e bases para bebidas.

3.4.2.8 Recuperação do d-Limoneno

Ringblom (2017) destaca uma última etapa capaz de gerar ainda mais agregação de valor ao processo, a recuperação do d-limoneno, um componente valioso. Essa etapa ocorre como parte do manejo da fase pesada derivada da primeira centrifugação do óleo de casca, conhecida como "água amarela". Essa fase, que contém pectina e outros materiais insolúveis, é frequentemente recirculada para os extratores de suco, embora parte dela (10 a 50%) deva ser substituída por água fresca para evitar a concentração excessiva desses compostos, que podem comprometer a eficiência da etapa. A fração de água amarela não recirculada, contendo 0,5 a

1,0% de óleo residual, não é descartada diretamente em moinhos de ração ou sistemas de tratamento de efluentes. Em vez disso, sistemas dedicados recuperam o d-limoneno presente, maximizando o aproveitamento econômico dos coprodutos e minimizando impactos ambientais.

4 MATERIAIS E MÉTODOS

Este capítulo apresenta a metodologia utilizada para alcançar os objetivos delineados para este trabalho. Tal metodologia foi estruturada em quatro etapas:

- (i) seleção da matéria-prima utilizada e preparação para a extração;
- (ii) seleção dos solventes utilizados no processo;
- (iii) desenvolvimento do aparato experimental e metodologia utilizada para quantificar os resultados.

Os experimentos foram realizados no Laboratório de Operações Unitárias e Análise Físico-Química de Alimentos da Universidade de Uberaba.

4.1 SELEÇÃO DA MATÉRIA-PRIMA

A matéria-prima utilizada neste estudo foi a casca da laranja-pera (*Citrus sinensis* L. Osbeck), adquirida no mercado local de Uberaba-MG e proveniente de plantações na região da cidade de Prata-MG. A seleção dessa variedade de laranja deve-se a sua ampla disponibilidade e ao seu elevado teor de óleo essencial na casca, conforme descrito em estudos anteriores. A Figura 15 apresenta o local onde foram adquiridas as amostras do fruto.

Figura 15 - Laranja-pera utilizadas para os ensaios

Fonte: Autor (2024).

Antes da etapa experimental, as laranjas foram higienizadas em solução aquosa com hipoclorito de sódio a 200 ppm por 15 minutos, seguindo protocolos de boas práticas de manipulação de alimentos.

Após a higienização procedeu-se à obtenção das *zest*s. As *zest*s correspondem à camada mais externa da casca da laranja, rica em glândulas de óleo essencial. A remoção das *zest*s foi realizada manualmente com o auxílio de um raspador de alimentos, tomando cuidado para retirar apenas a camada superficial da casca, de forma a não remover a parte branca (albedo) para evitar a contaminação do óleo essencial com compostos indesejados ao processo como fibras e a pectina, presentes em abundância no albedo da laranja.

Em análise realizada em um amostrador de umidade modelo HE53, da fabricante Metter Toledo, foi verificado o teor de umidade das cascas de laranja. A Figura 16 apresenta como se efetivou a análise de umidade em cascas de laranja-pera, realizada no amostrador de umidade HE53. As amostras fora preparados de forma a manter uma quantidade mínima de albedo, respeitando a especificações de tamanho da amostra do equipamento e o teste realizado em triplicata.

Figura 16 - Análise de Umidade em Cascas de Laranja-pera

Fonte: Autor (2024).

Conforme descrito por Letellier e Budzinski (1999), a umidade natural das cascas, em processo de extração do óleo essencial, atua como solvente durante o processo, contribuindo de forma positiva para a liberação dos óleos essenciais ao gerar pressão nas paredes celulares. O

teor de umidade das cascas de laranja, foi calculado conforme a Equação (1), obtendo-se um valor de Umidade = 76,01 % (0,18 %); n = 3.

$$H(\%) = \left(\frac{m_{\text{\'umida}} - m_{\text{seca}}}{m_{\text{\'umida}}}\right) \times 100 \tag{1}$$

onde,

U= umidade;

 $m_{\text{úmida}} = \text{massa úmida};$

 $m_{seca} = massa seca;$

Prepararam-se amostras *in natura* e amostras previamente submetidas à secagem em estufa de bandeja, a 50 °C durante doze horas, com o objetivo de reduzir significativamente o teor de umidade da matriz vegetal, minimizando interferências sem comprometer os compostos presentes no óleo essencial da casca de laranja (Figura 17). Ressalta-se que, embora possa permanecer umidade residual, o procedimento adotado assegurou a padronização das amostras, garantindo reprodutibilidade dos resultados e precisão nas análises.

A: matéria in natura

B: matéria seca

Fonte: Autor (2024).

4.2 SELEÇÃO DOS SOLVENTES UTILIZADOS NO PROCESSO DE EXTRAÇÃO DO ÓLEO SOLÚVEL

A seleção do solvente para a extração de óleo essencial por Soxhlet é um passo crucial, pois influencia diretamente a qualidade e o rendimento do produto final. A seleção do solvente deve considerar a polaridade dos compostos presentes no óleo essencial, a fim de garantir a sua solubilização eficiente. Neste estudo, são utilizados dois solventes, um polar e um apolar, em

testes separados. Ambos os solventes foram utilizados na razão de 1:5, (massa de casca / volume de solvente).

A temperatura de ebulição dos solventes foi calculada através da equação Clausius-Clapeyron, equação (2).

$$\ln(P) = \ln(P) - \frac{\Delta H_{\text{vap}}}{0} \qquad \frac{1}{T} \qquad \frac{1}{T_0}$$
(2)

onde,

P = pressão de vapor na altitude desejada (Uberaba-MG);

 $P_0 = pressão$ de vapor em uma temperatura de referência;

 $\Delta H_{\rm vap}$ = entalpia molar da vaporização (J/mol);

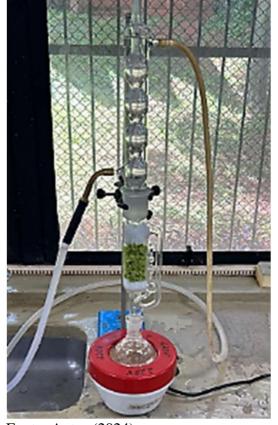
R = constante universal dos gases ideais (8,314 J/mol.K);

T e T_0 = são temperaturas absolutas (elvin).

Assim como Karne *et al.* (2023), apresenta em seu estudo, o solvente apolar selecionado é o hexano. O hexano é um hidrocarboneto alifático que apresenta alta capacidade de solubilização de compostos apolares, como os hidrocarbonetos terpênticos, que são os principais componentes do óleo essencial de laranja, como o limoneno. A utilização do hexano visa garantir a extração eficiente desses compostos, que são responsáveis pelas características sensoriais e biológicas do óleo essencial. O hexano apresenta um ponto de ebulição de 68,7°C a nível do mar e segundo a equação de Clausius-Clapeyron apresenta um ponto de ebulição de 65,3°C no local onde os testes foram realizados (a 823 metros do nível do mar).

O solvente polar selecionado é o álcool etílico 95% P.A., conhecido como etanol. Apesar da maior parte do óleo essencial de laranja ser composta por compostos apolares, o etanol é capaz de extrair alguns componentes minoritários que podem ter alguma polaridade, como os terpenóides e compostos fenólicos. O etanol apresenta um ponto de ebulição de 78,4°C a nível do mar e segundo a equação de Clausius-Clapeyron apresenta um ponto de ebulição de 76,5°C no local onde os testes foram realizados (a 823 metros do nível do mar). As propriedades dos solventes são apresentadas na Tabela 7.

Tabela 7 - Propriedades físico-químicas do hexano e do etanol.


Propriedade	Hexano	Etanol Anidro
Pureza (%)	96,0	99,0
Densidade de Vapor	2,9	1,59
Ponto de Ebulição (°C)	68,0	78,4

Fonte: Labsynth (2022) e Verquímica (2021)

A utilização de solventes apolares e polares em testes separados permitiu avaliar a influência da polaridade na composição do óleo essencial extraído. O hexano tende a ser mais eficiente na extração da maior parte do óleo essencial, devido a sua apolaridade, enquanto o etanol extrai uma parcela menor, porém com compostos diferentes, conforme descrito por Saoud (2003). A comparação entre as *zests in natura* e desidratadas, juntamente com a utilização dos diferentes tipos de solvente permitirá avaliar esses efeitos e melhorar tecnicamente a etapa de extração.

4.3 DESENVOLVIMENTO DO APARATO EXPERIMENTAL

Assim como apresentado em Karne H. *et al.* (2023), a extração do óleo essencial das *zest*s de laranja por Soxhlet foi realizada utilizando um aparato experimental composto por um balão de fundo redondo de 250 mL para armazenar o solvente orgânico (hexano ou etanol), um extrator Soxhlet de junta macho e fêmea do fabricante Mylabor, referência MY050, onde foram colocadas as *zest*s de laranja, um condensador de extrator Soxhlet do fabricante Mylabor, referência MY035, para condensar o vapor do solvente, uma manta de aquecimento do fabricante Fisatom, referência 22E, para aquecer o balão e evaporar o solvente. O controle de temperatura foi realizado através de um termômetro de mercúrio posicionado na parte superior do condensador e com um pirômetro a laser digital, realizando leituras periódicas no balão redondo onde está armazenado o solvente. A montagem do aparato experimental seguiu a configuração padrão para extração por Soxhlet, conforme mostrado na Figura 18.

Figura 18 - Aparelho Soxhlet utilizado no processo de extração

Fonte: Autor (2024).

A metodologia consistirá em preparar a amostra pesando em uma balança de precisão (marca, modelo, resolução), 50 g de *zest*s de laranja (*in natura* ou seca, de acordo com o ensaio) e acondicionando-as no Soxhlet, envoltas por algodão tanto na parte inferior quanto superior, visando evitar o arraste de matéria sólida para o balão redondo. O Soxhlet foi conectado ao balão de fundo redondo contendo o solvente selecionado (hexano ou etanol). O condensador foi acoplado ao extrator e a manta de aquecimento foi posicionada sob o balão. A manta de aquecimento foi ligada, aquecendo o solvente até a evaporação. O vapor do solvente foi condensado no condensador e gotejou sobre as *zest*s no cartucho. O solvente percolou através da amostra, solubilizando o óleo essencial. O extrato contendo o óleo essencial e o solvente foi sifonado de volta para o balão de fundo redondo. As etapas de evaporação, condensação e sifonagem foram repetidas por um determinado número de ciclos, dentro do tempo préestabelecido para a realização dos testes.

Ao final da etapa de extração, foi realizada a evaporação do solvente, visando a quantificação do óleo extraído em cada cenário. O aparato experimental, mostrado na Figura 20, para a evaporação foi montado utilizando uma manta de aquecimento onde foi inserido o balão de 250 mL contendo a solução de solvente com o óleo essencial. O balão foi interligado

a um condensador para promover a condensação do solvente que foi coletado em um frasco erlenmeyer também de 250 mL. Visando promover a ebulição do solvente na menor temperatura possível, a fim de evitar a perda de compostos voláteis presentes no óleo essencial, o solvente foi submetido a uma pressão negativa de 2,66 kPa, a partir de uma bomba de vácuo adaptada para a aplicação. A Figura 19 apresenta o aparato experimental utilizado para a evaporação do solvente.

Figura 19 - Aparato Experimental utilizado para a Evaporação do Solvente

Fonte: Autor (2024).

Para determinar o rendimento da extração, após o término da etapa de evaporação, o óleo essencial bruto obtido foi pesado em uma balança analítica de precisão do fabricante Gehaka, modelo BG 1000, com capacidade máxima de 1.010 g, menor divisão (resolução) de 0,01 g e escala de verificação (e) de 0,01 g.

4.4 PLANEJAMENTO EXPERIMENTAL

Segundo Montgomery, Runger e Hubele (2003), o planejamento experimental fatorial é uma técnica estatística utilizada para investigar simultaneamente o impacto de múltiplos fatores e suas interações em uma variável de interesse. Esse método é amplamente aplicado em diversas áreas do conhecimento, pois permite analisar múltiplas variáveis de forma eficiente, reduzindo a necessidade de muitos experimentos individuais. No delineamento fatorial, cada

fator é testado em diferentes níveis, e a combinação dessas condições define os ensaios a serem realizados. Essa abordagem possibilita a identificação dos efeitos principais de cada fator, bem como das interações entre eles, fornecendo uma compreensão mais detalhada dos processos analisados e auxiliando na sua otimização.

Para o presente estudo, foi empregado o planejamento experimental fatorial 2^2 , considerando duas condições para cada fator. O primeiro fator testado é o solvente, podendo o mesmo ser o hexano ou o etanol. O segundo fator testado é a umidade da amostra, podendo esta estar *in natura* ou seca. Neste caso, o objetivo é determinar o melhor rendimento da extração do óleo essencial da casca de laranja-pera (*Citrus sinensis* L. Osbeck) pelo método de Soxhlet, variando o tipo de solvente e a umidade da amostra. A Tabela 8 apresenta os níveis e os fatores do planejamento experimental.

Tabela 8 - Fatores e Níveis do Planejamento Experimental Fatorial

Fator	Nível -1 (Baixo)	Nível +1 (Alto)
Solvente (A)	Etanol (polar)	Hexano (apolar)
Umidade (B)	Casca seca	Casca in natura

Fonte: Autor.

A seguir tem-se a representação sistemática das combinações de níveis dos fatores do experimento fatorial. A matriz fatorial inclui todas as combinações possíveis dos fatores, que são repetições para melhorar a precisão estatística. A Tabela 9 apresenta a matriz fatorial do experimento.

Tabela 9 - Fatores e Níveis do Planejamento Experimental Fatorial

Experimento	Solvente (A)	Umidade (B)	Rendimento (%)
1	Etanol (-1)	Casca seca (-1)	X_1
2	Etanol (-1)	Casca in natura (+1)	X_2
3	Hexano (+1)	Casca seca (-1)	X_3
4	Hexano (+1)	Casca in natura (+1)	X ₄

Fonte: Autor.

4.5 CONSIDERAÇÕES EXPERIMENTAIS

Todo o experimento foi realizado em triplicata para garantir a reprodutibilidade dos resultados, a temperatura foi monitorada durante todo o processo para evitar degradação dos compostos voláteis. Os óleos essenciais obtidos foram armazenados em frascos de cor âmbar, devidamente identificados e mantidos em temperatura controlada de 25 °C, para evitar oxidação e perda dos compostos voláteis. O rendimento do óleo essencial foi calculado pela Equação (3):

$$R(\%) = \left(\frac{m_{\text{óleo}}}{m_{\text{casca}}}\right) \times 100 \tag{3}$$

onde,

R = rendimento em porcentagem;

 $m_{\text{óleo}} = \text{massa do óleo essencial obtido};$

 $m_{\rm casca} = {\rm massa}$ da casca utilizada no experimento;

5 RESULTADOS E DISCUSSÃO

Neste capítulo, são apresentados e discutidos os resultados obtidos nos experimentos de extração de óleo essencial de laranja por Soxhlet. Os rendimentos de óleo essencial obtidos em cada condição experimental São analisados, buscando identificar as combinações de fatores que proporcionam a maior eficiência de extração e avaliar a influência do tipo de solvente na composição do óleo extraído.

5.1 CARACTERÍSTICAS DO ÓLEO ESSENCIAL EXTRAÍDO

Os óleos essenciais extraídos apresentaram características visuais e olfativas distintas, dependendo do solvente utilizado. Após a extração, a solução de solvente mais óleo essencial extraído com hexano apresentou coloração amarelo-laranja clara, enquanto a solução de solvente mais o óleo essencial extraído com etanol apresentou coloração amarelo-esverdeada turva. A análise comparativa entre as amostras antes e depois do processo de secagem mostraram que as amostras que passaram pela etapa de secagem apresentaram coloração mais clara, sugerindo a perda de compostos voláteis durante o processo de secagem, como por exemplo o D-Limoneno.

Após a evaporação das amostras, foram observadas diferenças significativas nas características dos óleos essenciais obtidos. As amostras extraídas com etanol apresentaram um óleo de aspecto mais escuro e viscoso, com aparência semelhante a uma borra. Esse resultado pode ser atribuído à extração de compostos polares presentes na casca da laranja-pera, como os açúcares (glicose, frutose e sacarose), que, embora solubilizados, não constituem os principais compostos voláteis de interesse comercial, como o d-limoneno. Além dos açúcares, o etanol possivelmente promoveu a extração de outros componentes não voláteis, resultando em um produto com características visuais e sensoriais menos desejáveis para aplicações em fragrâncias e outros produtos de alto valor agregado. A figura 20 apresenta o aspecto visual das amostras após a etapa de extração.

Figura 20 - Aspecto Visual das Amostras

ETANOL ANIDRO

HEXANO

Óleo Extraído com o Etanol, matéria-prima seca

Óleo Extraído com o Etanol, matéria-prima seca

Óleo Extraído com o Etanol, matéria-prima in natura

Óleo Extraído com o Hexano, matéria-prima in natura

Fonte: Autor (2024).

Após a evaporação das amostras, foram observadas diferenças significativas nas características dos óleos essenciais obtidos. As amostras extraídas com etanol apresentaram um óleo de aspecto mais escuro e viscoso, com aparência semelhante a uma borra. Esse resultado pode ser atribuído à extração de compostos polares presentes na casca da laranja-pera, como os açúcares (glicose, frutose e sacarose), que, embora solubilizados, não constituem os principais compostos voláteis de interesse comercial, como o d-limoneno. Além dos açúcares, o etanol possivelmente promoveu a extração de outros componentes não voláteis, resultando em um produto com características visuais e sensoriais menos desejáveis para aplicações em fragrâncias e outros produtos de alto valor agregado.

Em contraste, as amostras submetidas à extração com n-hexano apresentaram um óleo essencial de coloração mais clara e com aroma cítrico característico da laranja, aspectos que se aproximam das descrições encontradas na literatura especializada. Tal resultado evidencia que

a polaridade do solvente exerce influência direta sobre o perfil de compostos extraídos. O n-hexano, por ser um solvente apolar, favoreceu a extração de compostos igualmente apolares, como os terpenos – especialmente o d-limoneno –, que são responsáveis tanto pelo aroma quanto pelo valor comercial do óleo essencial.

Importa salientar que, no presente trabalho, não foi realizada análise por cromatografia gasosa, técnica que permitiria a identificação qualitativa e quantitativa precisa dos compostos presentes nos extratos. No entanto, com base nas características físico-químicas observadas e no respaldo fornecido pela literatura científica, infere-se que o d-limoneno é um dos principais constituintes do óleo essencial obtido com n-hexano, especialmente devido à sua alta solubilidade em solventes apolares e sua predominância em óleos essenciais cítricos. Isso confirma que o n-hexano favorece a extração de terpenos como o limoneno, que são hidrocarbonetos apolares e, portanto, mais solúveis em solventes apolares. A Figura 21 apresenta o resultado de amostras após a evaporação.

Figura 21 - Óleo Extraído com o Etanol, após a evaporação (A) vs Óleo Extraído com o Hexano, após a evaporação (B)

B: Óleo Extraído com o Hexano

Fonte: Autor.

Os resultados encontrados neste estudo corroboram com os de Battista F. *et al.* (2020), que também demonstraram a eficiência do etanol na extração de compostos polares, como linalol e acetato de linalila, os quais são comumente encontrados em óleos essenciais de laranja. A alta polaridade do etanol facilita a interação com esses compostos, que possuem grupos funcionais como hidroxilas (-OH) e ésteres, tornando-os mais solúveis em solventes polares.

Esses compostos têm grande relevância para a indústria de fragrâncias e cosméticos devido às suas propriedades florais e frutais, que agregam valor sensorial aos produtos finais. De fato, a seleção do etanol como solvente para a extração de tais compostos é amplamente apoiada na literatura devido a sua eficácia na recuperação desses ingredientes ativos.

Por outro lado, os resultados também indicam que o n-hexano, um solvente apolar, se destacou na extração de d-limoneno, um monoterpeno com forte aroma cítrico, responsável pelo característico cheiro de laranja. O d-limoneno, devido à sua natureza apolar, interage de maneira mais eficaz com solventes apolares como o n-hexano. Isso é particularmente evidente no estudo de Battista F. *et al.* (2020), onde o hexano foi identificado como o solvente mais adequado para extrair limoneno das cascas de frutas. O hexano favorece a solubilização e extração do d-limoneno, proporcionando um rendimento mais elevado, o que é vantajoso considerando o alto valor comercial desse composto. O d-limoneno é amplamente utilizado não apenas na indústria de fragrâncias, mas também como solvente natural e em produtos alimentícios, o que reforça a relevância econômica dessa seleção.

5.2 RENDIMENTO DE ÓLEO ESSENCIAL

Os resultados de extração do óleo essencial das *zests* de laranja-pera variaram significativamente de acordo com o estado das *zests* (*in natura* ou secas) e o solvente utilizado (etanol e hexano), o que reflete a influência das condições de extração sobre o rendimento e a composição do óleo. Os resultados correspondem ao valor médio dentre os ensaios feitos em triplicata, com diferentes combinações de solvente e condição da amostra vegetal. Os resultados são apresentados em gramas de óleo essencial extraído e em porcentagem de rendimento, calculada em relação à massa inicial de *zest*s de laranja utilizada na extração. Os resultados dos ensaios são apresentados na Tabela 10.

Tabela 10 - Resultado da análise comparativa do rendimento de óleo da *zest* da casca de laranja-pera (*Citrus sinensis* L. Osbeck), valores médios

Ext	Extração pelo Método Soxhlet				
	50 g	50 g	50 g	50 g	
Base Vegetal	<i>Zest</i> de Laranja	<i>Zest</i> de Laranja	<i>Zest</i> de Laranja	<i>Zest</i> de Laranja	
Condições de Secagem	In natura	Seca em Estufa	In natura	Seca em Estufa	
	250 mL	250 mL	250 mL	250 mL	
Solvente (mL)	Etanol	Etanol	Hexano	Hexano	
Tempo (min)	60	60	60	60	
Número de Ciclos de Lavagem	5	4	8	7	
Temperatura de Ebulição do Solvente (°C)	76,5	76,5	67,4	67,4	
Evaporação					
Tempo (min)	120	120	120	120	
Temperatura (°C)	76,5	76,5	67,4	67,4	
Quantidade de Óleo Extraído (g)	3,38	0,221	1,095	0,751	
Rendimento da Extração (%)	$6,76 \pm 0,52$	$0,44 \pm 0,3$	$2,19 \pm 0,18$	$1,50 \pm 0,10$	

Fonte: Autor.

A extração das *zests in natura* com etanol resultou em um rendimento de 3,380 g de óleo essencial para cada 50 g de *zests*, o que corresponde a 6,760% de óleo essencial, em relação à massa inicial. O óleo extraído apresentou uma coloração mais escura e maior viscosidade, indicando a presença predominante de compostos polares, como linalol e acetato de linalila.

Esses compostos são comumente extraídos por solventes polares e têm sido frequentemente observados em óleos extraídos com etanol, conforme estudos anteriores (Battista *et al.*, 2020). A presença desses compostos sugere que o etanol favoreceu a extração de substâncias com grupos funcionais polares. Contudo, levando em conta o resultado das amostragens, não foi possível detectar a eficiência do etanol na extração do d-limoneno.

Nas zests secas extraídas com etanol, o rendimento de óleo essencial foi de 0,221 g para cada 50 g de zests, o que equivale a 0,442% de óleo essencial. O rendimento foi consideravelmente menor em comparação com as zests in natura. O óleo essencial extraído manteve características semelhantes às obtidas com as zests frescas, como a coloração mais escura e possivelmente com a presença de compostos polares. A perda de compostos voláteis durante o processo de secagem pode explicar o menor rendimento das zests secas em relação às zests in natura.

Ao utilizar o n-hexano para extrair as *zests in natura*, o rendimento de óleo essencial foi de 1,095 g para cada 50 g de *zests*, o que corresponde a 2,190% de óleo essencial. Este rendimento foi inferior ao obtido com etanol, e o óleo essencial extraído apresentou características mais próximas dos óleos essenciais típicos encontrados na literatura, como coloração mais clara e menor viscosidade. Estudos anteriores indicam que o n-hexano é altamente eficaz na extração de compostos apolares, como o limoneno, que é o principal componente volátil da casca de laranja (Battista *et al.*, 2020). A literatura sugere que os óleos essenciais extraídos através do Hexano apresentam alto teor de d-limoneno. Já as *zests* secas extraídas com n-hexano apresentaram o rendimento de óleo essencial de 0,751 g para cada 50 g de *zests*, equivalente a 1,502% de óleo essencial.

Os resultados obtidos neste estudo, com rendimentos variando de 0,44% a 6,76%, estão em consonância com os valores encontrados por Karne H. *et al.* (2023), que relataram rendimentos entre 2,6% e 3,9% na extração de óleo essencial da casca de laranja, dependendo do solvente utilizado. No trabalho das autoras, o uso da técnica de ultrassom foi apontado como o principal fator para o aumento da eficiência da extração, permitindo maior ruptura das células e, consequentemente, liberação mais eficiente dos compostos voláteis, mesmo com solventes polares como o isopropanol. Em comparação, o presente estudo utilizou o método Soxhlet, sem assistência por ultrassom, o que justifica os menores rendimentos médios em algumas condições testadas, sobretudo com solventes polares e matéria vegetal seca. Ainda assim, os resultados reforçam a relevância da seleção do método de extração e das condições operacionais na obtenção de óleos essenciais com maior eficiência.

5.3 ANÁLISE MATEMÁTICA E ESTATÍSTICA DOS RESULTADOS

A análise dos efeitos principais e das interações entre os fatores foi realizada para avaliar a influência de cada variável sobre o rendimento da extração do óleo essencial, utilizando o software gratuito software Jamovi (versão 2.3.28), que permite executar os testes estatísticos e análise de efeitos de forma robusta. A seguir são apresentadas as análises matemática e estatística dos dados coletados nos ensaios.

5.3.1 Análise Matemática

A média geral dos rendimentos foi de 2,74%, servindo como valor de referência para a análise dos efeitos dos fatores individuais e da interação entre eles. O efeito do solvente (A) foi positivo e significativo, apresentando um valor de 3,503. Este resultado indica que a utilização do solvente tem um impacto considerável no aumento do rendimento da extração. Do ponto de vista matemático, o efeito positivo sugere que o etanol é altamente eficiente para a extração do óleo essencial, contribuindo significativamente para a quantidade de produto final obtido. O valor elevado do efeito A destaca a relevância deste fator no processo, indicando que a seleção do solvente é determinante para melhorar a eficiência da extração.

O efeito da umidade (B) também apresentou valor positivo de 1,755, sugerindo que níveis mais elevados de umidade podem estar associados a maiores rendimentos na extração do óleo essencial. Estatisticamente, este resultado indica que a umidade exerce influência sobre o rendimento observado. Entretanto, é importante considerar que esse efeito pode refletir não apenas uma melhoria direta na extração, mas também a possibilidade de perda de compostos voláteis juntamente com a água durante o processo de secagem. Assim, embora o aumento da umidade aparente favorecer o rendimento do óleo essencial, interpretações mais detalhadas demandariam investigações adicionais para separar os efeitos reais da umidade da volatilização de compostos, evitando conclusões precipitadas sobre a relação causal entre essas variáveis.

A interação entre o solvente e a umidade apresentou um valor significativo de 2,815, o que indica que a combinação desses dois fatores exerce uma influência conjunta no rendimento da extração. A interação significativa sugere que o efeito de cada fator depende da condição do outro, ou seja, a eficácia da umidade está relacionada ao tipo de solvente utilizado. Esse achado reforça a importância de analisar não apenas os fatores isoladamente, mas também suas interações, a fim de maximizar o rendimento da extração de forma mais eficiente.

O gráfico da Figura 22 ilustra os efeitos principais e de interação na extração de óleo essencial e a média geral dos rendimentos e os efeitos do solvente, da umidade e da interação entre ambos na extração do óleo essencial.

4,000 3,503 3,500 2,815 3,000 2,74 2,500 2.000 1,755 1.500 1,000 0,500 0,000 Média Solvente Umidade Interação

Figura 22 - Efeitos Principais e Interação na Extração de Óleo

Fonte: Autor.

Com os efeitos calculados, podemos expressar o rendimento da extração (%) como:

Y = 2,724 + 3,503A + 1,755B + 2,815AB onde,

A = Tipo de solvente (+1 para Hexano, -1 para Etanol)

B = Umidade (+1 para casca úmida, -1 para a casca seca)

Os resultados demonstram que o solvente foi o fator mais influente no rendimento da extração de óleo essencial da casca de laranja-pera. O efeito do solvente (+3,503%) foi maior que o efeito da umidade (+1,755%), indicando que a seleção do solvente tem um impacto mais expressivo na eficiência da etapa. A interação entre os fatores foi significativa (+2,815%), o que significa que a influência da umidade depende do solvente utilizado. Isso sugere que a umidade tem um efeito positivo quando usada com etanol, mas não tem o mesmo impacto quando se utiliza hexano.

5.3.2 Análise Estatística

Para avaliar a influência dos fatores experimentais sobre o rendimento do óleo essencial de casca de laranja-pera, os dados obtidos em triplicata foram submetidos a análise estatística abrangente, incluindo regressão linear e análise de variância (ANOVA). Os valores registrados para cada grupo foram 6,232; 6,76; 7,288 (Grupo 1, média 6,76; DP = 0,528), 0,407; 0,44; 0,473 (Grupo 2, média 0,44; DP = 0,033), 2,002; 2,19; 2,378 (Grupo 3, média 2,19; DP = 0,188) e 1,399; 1,50; 1,601 (Grupo 4, média 1,50; DP = 0,101).

A regressão linear foi utilizada para modelar a relação entre as variáveis independentes e o rendimento, permitindo estimar coeficientes de efeito e avaliar a tendência geral dos dados. Em seguida, os grupos foram comparados por meio de ANOVA, realizada no software gratuito Jamovi, com nível de significância fixado em p < 0.05. A ANOVA revelou diferenças estatisticamente significativas entre os grupos (F = 42.36; p < 0.001), indicando que as médias dos rendimentos diferem de forma não aleatória.

Para complementar a análise, aplicou-se o teste post-hoc de Tukey, que identificou diferenças significativas entre os Grupos 1, 3 e os demais, enquanto os Grupos 2 e 4 não diferiram entre si. A regressão mostrou tendência positiva de aumento do rendimento em função das variáveis analisadas, corroborando parcialmente as conclusões da ANOVA. Estes resultados fornecem suporte estatístico robusto para afirmar que os fatores avaliados impactam significativamente o rendimento do óleo essencial, validando a utilização conjunta de regressão e ANOVA como ferramentas complementares de análise quantitativa.

6 CONCLUSÕES

O presente estudo investigou a extração de óleo essencial de laranja (*Citrus sinensis* L. Osbeck) por meio do método de Soxhlet, com foco na influência do tipo de solvente (hexano e etanol) e da condição da amostra vegetal (*in natura* e desidratada) sobre o rendimento e a composição visual do óleo extraído. A análise dos resultados evidenciou que tanto o tipo de solvente quanto o estado da amostra vegetal têm impactos significativos no processo de extração.

O maior rendimento foi obtido utilizando o etanol como solvente nas *zest*s de laranja *in natura*, embora o óleo extraído tenha demonstrado baixo valor comercial devido a possível presença de compostos menos valiosos. Em contrapartida, o óleo extraído com hexano, embora em menor concentração, revelou-se bem aromático, característico da extração do d-limoneno, um composto de alto valor comercial.

A condição da amostra vegetal também se mostrou um fator importante. As zests in natura apresentaram maior rendimento em comparação às zests desidratadas, sugerindo que a desidratação pode alterar a estrutura da matriz vegetal e, consequentemente, afetar a eficiência da extração. A perda de compostos voláteis durante o processo de desidratação pode ter afetado a extração do óleo essencial.

Este estudo confirmou que a combinação do hexano como solvente e as *zest*s de laranja *in natura* é a mais adequada para a extração de óleo essencial, com ênfase na obtenção de dlimoneno, que tem um valor comercial superior. Embora o etanol tenha apresentado um maior rendimento, a extração resultou em um óleo de menor valor comercial, possivelmente devido à predominância de outros compostos.

Com base nesses resultados, é possível identificar os parâmetros de extração para melhorar tanto o rendimento quanto a qualidade do óleo essencial extraído. A pesquisa futura pode explorar a avaliação de outros parâmetros operacionais, como temperatura e número de ciclos de extração, contribuindo para o desenvolvimento de metodologias mais econômicas e sustentáveis na produção de óleo essencial de laranja.

A fim de complementar o presente estudo ou explorar novos aspectos identificados a partir de sua realização, sugere-se para trabalhos futuros:

Avaliação da composição do óleo essencial: A análise da composição do óleo essencial por técnicas como cromatografia gasosa acoplada à espectrometria de massas (GC-MS) permitiria identificar e quantificar os compostos presentes no óleo extraído em diferentes condições experimentais;

- Outros parâmetros da etapa de extração por Soxhlet, como o tempo de extração e a temperatura, podem ser otimizados para maximizar o rendimento e a qualidade do óleo essencial;
- Estudar a funcionalidade de extração óleo essencial da casca laranja-pera, em métodos Soxhlet, utilizando a mistura de solventes polares com solventes apolares, em concentrações variadas.

REFERÊNCIAS

ANGOY, Alice *et al.* Development of a green innovative semi-industrial scale pilot combined microwave heating and centrifugal force to extract essential oils and phenolic compounds from orange peels. **Innovative Food Science & Emerging Technologies**, [s. *l.*], v. 61, p. 102338, 2020.

ASSOCIAÇÃO NACIONAL DOS EXPORTADORES DE SUCOS CÍTRICOS (CitrusBR). **A Indústria brasileira de suco de laranja**. São Paulo-SP, CitrusBr-APEX, 2014. 34 p. Disponível em: https://citrusbr.com/wp-content/uploads/2021/03/A-industria-brasileira-de-suco-de-laranja.pdf. Acesso em: 12 out. 2016.

ASSOCITRUS. **A origem e a característica da laranja**. Associtrus, São Paulo, 2008. Disponível em:

http://www.associtrus.com.br/index.php?xvar=mostranoticia&id=1939&idtipo=4. Acesso em: 9 jul. 2013.

BAKKALI, F. *et al.* **Efeitos biológicos de óleos essenciais - Uma revisão**. Toxicologia Alimentar e Química, [s. l.], v. 46, n. 2, p. 446-75, 2008.

BAKKALI, F.; AVERBECK, S.; AVERBECK, D.; IDAOMAR, M. **Biological effects of essential oils – A review.** Food and Chemical Toxicology, [s. l.], v. 46, n. 2, p. 446-475, 2008. DOI: https://doi.org/10.1016/j.fct.2007.09.106.

BATTISTA, F.; REMELLI, G.; ZANZONI, S.; BOLZONELLA, D. Valorization of Residual Orange Peels: Limonene Recovery, Volatile Fatty Acids, and Biogas Production. ACS Sustain. Chem. Eng. [s. l.], v. 8, p. 6834–6843, 2020.

BIASI, L. A.; DESCHAMPS, C. **Plantas aromáticas: do cultivo à produção de óleo essencial**. Curitiba: Layer Studio Gráfico e Editora Ltda, 2009.

BIZZO, H. R.; HOVELL, A. M. C.; REZENDE, C. M. **Óleos essenciais no Brasil: aspectos gerais, desenvolvimento e perspectivas.** Química Nova, [s. l.], v. 32, p. 588-594, 2009. DOI: 10.1590/S0100-40422009000300005.

BURT, S. Essential oils: their antibacterial properties and potential applications in **foods—a review**. International Journal of Food Microbiology, v. 94, n. 3, p. 223–253, 2004. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

CHAN, E. S.; LEE, T. C.; WONG, K. W. **Microwave-assisted extraction of active ingredients from plants**. Journal of Food Science, v. 76, n. 1, p. 1–8, 2011. DOI: 10.1111/j.1750-3841.2010.02053.x.

COMEX STAT. **Comex Stat**. Brasília: MDIC, 2022. Disponível em http://comexstat.mdic.gov.br/pt/ home. Acesso em: 10 mar. 2022.

CORAZZA, M. J.; NOVELLI, V.M.; NUNES, M. W.C.; MOREIRA, A.L.O.R; CARVALHO, S.A; MACHADO, M.A. 2005. **Aurantioideae: uma revisão da taxonomia e filogenia, com as contribuições da sistemática molecular**. Laranja, Cordeirópolis, 26:2, 359-374 pp.

CORAZZA, S. Aromacologia: uma ciência de muitos cheiros. São Paulo: SENAC, 2002.

CUNHA SOBRINHO, Almir Pinto da *et al.* Cultura dos citros. Brasília: Empresa Brasileira de Pesquisa Agropecuária Embrapa Mandioca e Fruticultura Ministério da Agricultura, Pecuária e Abastecimento, 2013. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/doc/979492/1/CULTURA-CITROSed01-2013.pdf. Acesso em: 3 out. 2024.

DONADIO, L.C.; STUCHI, S. E.; POZZAN, M.; SEMPIONATO, O. R. **Novas** variedades e clones de laranja doce para indústria. Jaboticabal-SP: FUNEP, 1999. v. 1.

FALLEH, H.; BEN JEMAA, M.; SAADA, M.; KSOURI, R. **Essential oils: a promising eco-friendly food preservative**. Food Chemistry, v. 330, p. 127268, 2020. DOI: https://doi.org/10.1016/j.foodchem.2020.127268

FERRARINI, Stela Regina *et al.* Acaricidal activity of limonene, limonene oxide and β-amino alcohol derivatives on Rhipicephalus (Boophilus) microplus. Veterinary parasitology, [s. l.], v. 157, n. 1, p. 149-153, 2008.

FILLY, AURORE; SOZMEN, FAZLI; OXSAL, BIRSEN S.; CHEMAT, FARID. **Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale**. Journal of Chromatography A, v. 1043, n. 1, p. 1–7, 2014. DOI: 10.1016/j.chroma.2004.07.093

GROSSO, C. R. F.; GROSSO, N. R. S.; SILVA, M. A. A. **Óleos essenciais e sua extração por arraste a vapor**. Infoteca-e, 2011. Disponível em: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/415581?mode=full. Acesso em: 28 ago. 2025.

GUENTHER, E. Oil of patchouly. In: GUENTHER, E. **Essential oils of the plant family Labiatae**. New York: Krieger Publishing Company, 1972. p. 552-575. Disponível em: https://www.grandviewresearch.com/industry-analysis/essential-oils-market. Acesso em: 10 mar. 2022.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). **Tabela 6705**. Rio de Janeiro: IBGE, 2018. Disponível em: https://sidra.ibge.gov.br/Tabela/6705. Acesso em: 10 mar. 2022.

ITC TRADE MAP. Index. [s. l.]: **Trade Map, 2021**. Disponível em: https://www.trademap.org/Index.aspx. Acesso em: 10 mar. 2022.

KORTBEEK, R. W. J.; VAN DER GRAGT, M.; BLEEKER, P. M. Endogenous plant

metabolites against insects. European Journal of Plant Pathology, [s. l.], v. 154, n. 1, p. 67-90, 2019.

KUMAR, S.; PANDEY, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, [s. l.], v. 2013, p. 10-16, 2013.

LABSYNTH. **Ficha de Informação de Segurança de Produto Químico – N-Hexano**. Diadema: [s. n.], 2022. Disponível em: https://www.labsynth.com.br/. Acesso em: 19 ago. 2025.

LEAL, P. F. Estudo comparativo entre os custos de manufaturas e as propriedades funcionais de oleos volateis obtidos por extração supercritica e evaporação por arraste a vapor. 2018. Tese (Doutorado) — Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, 2018.

LETELLIER, M.; BUDZINSKI, H. Microwave-assisted extraction of organic compounds. Analusis, v. 27, n. 4, p. 259–271, 1999. DOI: 10.1051/analusis:1999116

LI, SHUANG; WANG, ZHIQIANG; LIU, YUJIE; LI, JUN; WANG, ZHIQIANG. **Microwave-assisted extraction of essential oils from basil and epazote: A factorial design approach**. Journal of Food Engineering, v. 118, n. 2, p. 147–153, 2013. DOI: 10.1016/j.jfoodeng.2013.04.024.

LORENZI, H. *et al.* **Frutas brasileiras e exóticas cultivadas (de consumo in natura).** São Paulo: Instituto Plantarum de Estudos da Flora, 2006.

MACIEL, M. V.; MORAIS, S. M.; BEVILAQUA, C. M. L.; SILVA, R. A.; BARROS, R. S.; SOUSA, R. N.; SOUZA-NETO, M. A. Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis. Veterinary parasitology, [s. l.], v. 167, n. 1, p. 1-7, 2002.

MARGETTS, J. Aroma Chemicals V: Natural Aroma Chemicals. *In*: ROWE, D. (ed.). 1. Ed. **Chemistry and Technology of Flavours and Fragrances**. Oxford: Blackwell Publishing Ltd, 2005. Ch. 8, p. 175.

Market and Market; https://www.marketsandmarkets.com/Market-Reports/essential-oilmarket-119674487.html, acessada em março 2022.

McHugh, Mark A.; Krukonis, Val J. Supercritical Fluid Extraction: Principles and Practice. 2. ed. Boston: Butterworth-Heinemann, 1994.

MONTGOMERY, D. C.; RUNGER, G. C.; HUBELE, N. F. Estatística aplicada à engenharia. 2. ed. Rio de Janeiro: LTC, 2004.

MONTHOMERY, G.C. Runger. Estatística aplicada e probabilidade para engenheiros, 2. ed. Rio de Janeiro: LTC, 2003.

NEVES, M.F.; KALAKI, R.B.; TROMBIN, V.G. **O** retrato da citricultura brasileira. Ribeirão Preto: Citrus, 2010. 137 p.

ORANGE HANDBOOK. **Orange Handbook**. [s. l.]: Tetra Pak, 2025. Disponível em: orangebook.tetrapak.com. Acesso em: 28 ago. 2025.

PAGARE, S. *et al.* Secondary Metabolites of Plants and Their Role: Overview. **Current Trends in Biotechnology and Pharmacy**, [s. l.], v. 9, n. 3, p. 293-304, 2015.

PAVELA, R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products, [s. l.], v. 76, p. 174-187, 2015.

PINHEIRO, A. L. Produção de óleos Essenciais. Viçosa: CPT, 2003.

PIO, R.M.; FIGUEIREDO, J.O.; STUCHI, E.D.; CARDOSO, S.A.B. .2005. **Variedades copa**. *In*: MATTOS JUNIOR, D.; NEGRI, J. D.; PIO, R. M.; POMPEU JUNIOR, J. CITROS. Campinas: Instituto Agronômico; Fundag, 2005. p. 37-60.

POMPEU, J. **Rootstocks and scions in the citriculture of the São Paulo**. *In*: Int. Cong. Citrus Nurserymen, 6. Proceedings [...]. Ribeirão Preto, São Paulo: [s. n.], 2001. p. 75-82.

RASSEM, H. H. A.; NOUR, A. H.; YUNUS, R. M. **Techniques for extraction of essential oils from plants: a review**. Australian Journal of Basic and Applied Sciences, [s. l.], v. 10, n. 16, p. 117- 127, 2016.

REVERCHON, ERNESTO; DE MARCO, IOLANDA. **Supercritical fluid extraction and fractionation of natural matter**. The Journal of Supercritical Fluids, v. 38, n. 2, p. 146–166, 2006.

REZENDE W., *et al.*, O mercado de óleos essenciais no Brasil e no mundo na última década. **Química Nova**, [s. l.], v. 45, p. 949-958, 2022.

RINGBLOM, U. (ed.). The Orange Book. Tetra Pak: Lund, 2017.

SARTOR, J. F. **Técnicas de extração de óleos essenciais de plantas nativas**. 2021. Disponível em:

https://repositorio.utfpr.edu.br/jspui/bitstream/1/34450/1/oleoessencialplantanativa.pdf. Acesso em: 28 ago. 2025.

SAULS, Julian W. **Home Fruit Productions – Oranges**. Texas: The Texas A&M. University System, 1998.

SCIENCE IN SCHOOL. **Citrus science: learn with limonene**. 2022. Disponível em: https://www.scienceinschool.org/article/2022/citrus-science-limonene. Acesso em: 28 ago. 2025.

- SCHENKEL, E.P.; GOSMANN, G.; ATHAYDE, M.L. Saponinas. *In*: SIMÕES, C.M.; SCHENKEL, E. P.; GOSMANN, G.; MELLO, J. C.P.; MENTZ, L.A.; PETROVICK, P. R. **Farmacognosia: da planta ao medicamento**. 3 ed. Porto Alegre: Ed. UFGRS/Ed. UFSC, 2001. cap. 27, p. 597-619.
- SILVA, A. de P. Uso do D-Limoneno como Retardante de Envelhecimento de Emulsão Asfáltica Aplicada em Tratamento Superficial por Penetração. 2023. 121 f. Dissertação (Mestrado em Engenharia de Transportes) Universidade Federal do Ceará, Fortaleza, 2023. Disponível em: repositório da UFC. Acesso em: 19 ago. 2025.
- SILVEIRA, J. C.; BUSATO, N.; COSTA, A.; JUNIOR, E. C. Levantamento e análise de métodos de extração de óleos essenciais. Enciclopédia Biosfera, [s. l.], v. 8, n. 15, 2012.
- SIMÕES, C. M. O.; SPITZER, V. **Óleos Voláteis**. *In*: SIMÕES, C. M. O.; SCHENKEL, E.P.; GOSMANN, G.; MELLO, J. C. P.; MENTZ, L. A.; PETROVICK, P. R. (eds.). Farmacognosia: da planta ao medicamento. 5. ed. rev. ampl. Porto Alegre; Florianópolis: Editoras da UFRGS/UFSC, 2003.
- TUREK, C.; STINTZING, F. C. **Stability of essential oils: A review**. Comprehensive Reviews in Food Science and Food Safety, v. 12, n. 1, p. 40-53, 2013. DOI: https://doi.org/10.1111/1541-4337.12006
- TURRA, C.; VIAN, C. E. F.; SOARES, A. F.; BINI, D. A. **Análise socioeconômica e ambiental da citricultura no Estado de São Paulo**. In: Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural, 53, 2015, João Pessoa-PB. Anais[...]. Brasília: Sociedade Brasileira de Economia, Administração e Sociologia Rural, 2015.
- UNITED STATES STANDARDS FOR GRADES OF ORANGE JUICE. Washington, D.C., 2012. Disponível em:

https://www.ams.usda.gov/sites/default/files/media/Canned_Orange_Juice_Standard%5B1 %5D.pdf. Acesso em: 28 ago. 2025.

UNIVERSIDADE ESTADUAL DE MARINGÁ. **Núcleo de Pesquisa em Biotecnologia Aplicada (NBA)**. Maringá, UEM, 2018. Disponível em: http://sites.uem.br/NBA/news/laranja-pera. Acesso em: 22 jun. 2018.

VAN BOEKEL, S. **Transformação dos resíduos de industrialização de laranja pera** (*Citrussinensis Osbeck*) **em farinha desidratada e extrudada**. 2012. 91 p. Tese (Doutorado em Química) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2012.

VERQUÍMICA INDÚSTRIA E COMÉRCIO DE PRODUTOS QUÍMICOS EIRELI (Verquímica). Ficha de Informação de Segurança de Produto Químico – Álcool Anidro (Álcool 99). Guarulhos, 2021. Disponível em: https://www.verquimica.com.br/. Acesso em: 19 ago. 2025.

VINATORU, MIRCEA. An overview of the ultrasonically assisted extraction of

bioactive principles from herbs. Ultrasonics Sonochemistry, v. 8, n. 3, p. 303–313, jul. 2001. DOI: 10.1016/S1350-4177(01)00071-2.

VITTI, A. M. S.; BRITO, J. O. **Óleo essencial de eucalipto**. Piracicaba: ESALQ, 2003. 26 p. (Documentos florestais, 17).