UNIVERSIDADE DE UBERABA DANIELA LIMA MARTINS

CÁLCULO DA EFICIENCIA DE TURBOGERADORES DE UMA PLANTA DE ÁCIDO SULFÚRICO

UBERABA/MG

DANIELA LIMA MARTINS

CÁLCULO DA EFICIENCIA DE TURBOGERADORES DE UMA PLANTA DE ÁCIDO SULFÚRICO

Monografia apresentada ao curso de Engenharia Química na Universidade de Uberaba, como requisito parcial para a obtenção do grau em Engenharia Química.

Orientador Prof.: André Arcelo Pinto

UBERABA/MG

DANIELA LIMA MARTINS

CÁLCULO DA EFICIENCIA DE TURBOGERADORES DE UMA PLANTA DE ÁCIDO SULFÚRICO

Monografia apresentada ao curso de Engenharia Química na Universidade de Uberaba, como requisito parcial para a obtenção do grau em Engenharia Química.

Aprovada e	em de	de
	BANCA EXAMINADORA:	
	Nome do Professor	
	Nome do Professor	
	Nome do Professor	

"You can't connect the dots looking forward, you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future."

AGRADECIMENTOS

Primeiramente, agradeço aos meus pais que foram o motivo e a força dessa etapa, por sempre me encorajarem a ser melhor, que sempre me cobraram a excelência e foram quem formaram meu caráter.

Ao meu noivo Igor R. S. Paiva que esteve presente desde o início apoiando minhas escolhas e me ajudando a seguir em frente.

Agradeço ao meu orientador que no decorrer deste trabalho me instruiu da melhor forma possível para a realização do projeto por ter me aceitado como orientanda e por acreditar em meu potencial.

Gostaria de agradecer também a todo o corpo docente que me formaram como profissional não só com conhecimento técnico, mas também com o conhecimento adquirido por eles na vivência da profissão.

Aos meus amigos em especial Bianca B. Martins, Douglas Ramos, Márcia G. Abdalla e Pedro Vitorino que foram meu apoio nestes cinco anos de curso e que sempre estiveram presentes em todas as ocasiões sejam elas boas ou ruins.

Por fim, agradeço ao engenheiro químico Marcelo Martins das Chagas, por ter disponibilizado seu conhecimento e tempo para a conclusão deste trabalho, mostrando-se sempre aberto para esclarecimentos quando precisei, sem ele não seria possível este projeto.

RESUMO

Em indústrias de produção de ácido sulfúrico o vapor é de suma importância, uma das suas funcionalidades é a geração de energia através dos turbos geradores. O vapor proveniente do resfriamento dos gases de processo é encaminhado para turbinas de geração de energia. Esta energia é utilizada nos demais processos, assim tem-se uma redução significativa nos custos de produção. A turbina A apresentou eficiência inferior a turbina B tanto na extração quanto na condensação. No cálculo de geração, foi notado uma baixa produção de energia comparado com o projeto na turbina A, a eficiência atual do turbo gerador A em média é de 85%, ou seja, 15% abaixo do descrito em projeto, trazendo perdas significativas no lucro da empresa, foi notado também que além de gerar abaixo do esperado esta turbina opera com sistema de vácuo na partida, consumindo ainda mais vapor. Enquanto isso a turbina B apresenta valores próximos ao esperado.

Palavras-chave: Eficiência; Geração de Energia; Turbinas a Vapor.

ABSTRACT

In the industries producing sulfuric acid, steam is of paramount importance. One of its functionalities is the generation of energy through turbine generators. The steam obtained by the cooling of the process gases is directed to power generator turbines. This energy is used in other processes, thus there is a significant reduction in production costs. Turbine A showed less efficiency than turbine B in both extraction and condensation. In the calculation of generation, it was noticed a low energy production compared to the design in turbine A, the current efficiency of the turbine generator A on average is 85%, that is, 15% below the one described in the project, bringing significant losses in profit of the company. It was also noticed that, besides generating below the expected, this turbine operates with system of vacuum in the departure, consuming even more steam. Meanwhile, turbine B presents values close to expectations.

Keywords: Efficiency; Power generation; Steam Turbines.

LISTA DE FIGURAS

Figura 1: Fluxo de uma turbina	16
Figura 2: Turbina de ação e reação	19
Figura 3. Ciclo de Carnot	20
Figura 4. Modelo de ciclo segundo Rankine	21
Figura 5. Fluxograma do processo de produção de Ácido Sulfúrico	28
Figura 6. Esquema de funcionamento dos co-geradores	32
Figura 7. Considerações para cálculo de eficiência	32

LISTA DE TABELAS

Tabela 1. Dados operacionais Turbina A	Erro! Indicador não definido.
Tabela 2. Dados operacionais turbina B	Erro! Indicador não definido.
Tabela 3. Dados de projeto dos turbo geradores	30
Tabela 4. Dados projeto dos condensadores	31
Tabela 5 : Eficiência na extração das turbinas	36
Tabela 6 : Eficiência na condensação das turbinas	36
Tabela 7 : Geração de energia das turbinas	38
Tabela 8 : Cálculo de custos	38

SUMÁRIO

CAPITULO I	13
OBJETIVOS	15
1.1 OBJETIVO GERAL	15
1.2 OBJETIVOS ESPECÍFICOS	15
CAPÍTULO II: REVISÃO BIBLIOGRÁFICA	16
2.1 TURBINAS A VAPOR	16
2.2 CONCEITOS TERMODINÂMICOS	17
2.2.1 Princípio da ação e da reação	18
2.3 CICLOS DE POTÊNCIA A VAPOR	20
2.3.1 Ciclo a vapor de Carnot	20
2.3.2 Ciclo a vapor de Rankine	21
2.4 PRODUÇÃO DE ÁCIDO SULFÚRICO	22
2.4.1 Matéria-prima	22
2.4.2 Produto	22
2.4.3 Reações químicas	22
2.4.4 Descrição do processo	23
2.4.4.1 Recebimento do enxofre	23
2.4.4.2 Etapa de fusão do enxofre	23
2.4.4.3 Etapa de filtragem do enxofre	24
2.4.4.4 Unidade de produção de ácido sulfúrico	24
2.4.4.5 Etapa de conversão do SO ₂	25
2.4.4.6 Etapa de absorção do SO ₃	26
2.4.4.8 Geração de vapor d'água	27
CAPÍTULO III: MATERIAIS E MÉTODOS	29

3.1 DADOS OPERACIONAIS E DE PROJETO DAS TURBINAS	29
3.2 METODOLOGIA DE CALCULO	31
CAPÍTULO IV: RESULTADOS E DISCUSSÃO	36
CAPÍTULO V: CONCLUSÃO	40
REFERÊNCIAS	41
APÊNDICE A - CURVA DE DESEMPENHO DA TURBINA	43
APÊNDICE B - TABELAS TERMODINÂMICAS	44
ANEXO A – INTERPOLAÇÃO NA ADMISSÃO E SAÍDA DAS TURBINAS NA EXTRAÇÃO	51
ANEXO B – INTERPOLAÇÃO NA ADMISSÃO E SAÍDA DAS TURBINAS NA CONDENSAÇÃO	52
ANEXO C – INTERPOLAÇÃO DOS DADOS DE PROJETOS, VALORES DE ENTALPIA E EFICIÊNCIA NA EXTRAÇÃO E CONDENSAÇÃO ENCONTRADO	
ANEXO D – CÁLCULO DO TÍTULO DE VAPOR E DA ENTALPIA ISENTRÓPIC NA CONDENSAÇÃO	A
ANEXO E – CÁLCULO DE GERAÇÃO	55

Plantas de produção de ácido sulfúrico buscam melhorias do processo com baixo custo. Uma forma alternativa é a geração de energia a partir do vapor gerado pela caldeira da fábrica. A busca pela redução de custos e uma fonte energética cada vez mais eficiente é um dos grandes desafios encontrados atualmente para esta planta, um ponto de partida para sanar esta deficiência energética é através de cálculos termodinâmicos para obtenção exata da eficiência real da planta, assim é possível encontrar possíveis causas do problema e buscar soluções para a melhoria do processo.

Os geradores estudados produzem energia para ser consumida em um complexo químico de grande porte. O processo gira em torno de uma planta de ácido sulfúrico onde a produção ocorre pelo método de contato, permitindo a cogeração de vapor e energia, onde há a combustão de enxofre fundido e conversão de SO₂ a SO₃. Vale ressaltar que este o processo é extremamente exotérmico, ou seja, as reações químicas em cada etapa do processo liberam uma grande quantidade de calor. Basicamente, a geração de vapor está ligada ao resfriamento dos gases provenientes da queima de enxofre para obtenção de SO₂. Á água desareada é bombeada para a caldeira de recuperação da planta de ácido. O vapor de alta pressão é gerado na planta de ácido a 44 kgf/cm² e 394 °C.

A formação de vapor de alta pressão é enviada para o limite de bateria e para as turbinas onde a energia térmica do vapor é convertida para energia mecânica através dos bocais, onde a entalpia é transformada em energia cinética, e das pás, a energia cinética se converte para trabalho mecânico. Essa geração acontece em dois turbos geradores com fornecedores distintos, sendo assim há uma diferença considerável entre os mesmos.

O cenário energético atual favorece a análise de viabilidade técnica e econômica. Acredita-se que há um forte potencial para melhorias na geração de energia da planta de ácido sulfúrico, apurado que a carga atual apresenta ineficiência quando comparada com a carga estipulada no projeto. Visto isso, como explicar a baixa eficiência energética atual ao decorrer das campanhas? Como problemas de

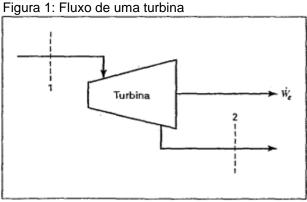
manutenção e operação vêm afetando a fábrica? Há viabilidade econômica em medidas ditas como melhoria?

A otimização do processo tem sido um ponto relevante para consideráveis reduções de custos e melhoramento produtivo. Em caso de ganhos de eficiência, é possível reduzir o consumo de energia fornecida pela operadora energética, assim haverá uma diminuição da dependência energética com a mesma e principalmente uma redução anual de custo considerável.

Devido a esses fatores, o trabalho irá abordar a relevância da eficiência energética na otimização dos processos e custos da empresa. No próximo capítulo será apresentado uma revisão literária com intuito de propiciar um embasamento teórico para realização dos cálculos necessários no trabalho.

1.1 OBJETIVO GERAL

O principal objetivo é a criação de um acompanhamento até então inexistente através de um cálculo de eficiência feito por uma planilha do excel, assim é possível comparar os dados reais com os de projeto, possibilitando um levantamento em campo das deficiências e o custo total da implantação de todos os benefícios para a fábrica. Provando que a produtividade depende diretamente do cálculo de eficiência das operações unitárias envolvidas, sendo elas críticas ou não.


1.2 OBJETIVOS ESPECÍFICOS

- Obtenção de valores de temperatura e pressão com o setor de automação.
- Inspeção crítica em campo com auxílio da manutenção.

2.1 TURBINAS A VAPOR

Entende-se por turbinas de vapor as máquinas térmicas que transformam a energia potencial termodinâmica compreendida no vapor em trabalho mecânico.

Segundo SMITH (2007) uma turbina constituída por conjuntos alternados de bocais e pás giratórias, ainda a turbina possui paletas, hélices, lâminas ou cubos colocados ao redor de sua circunferência, através dos quais vapor ou gás escoa em um processo de expansão em estado estacionário. O resultado global é a conversão da energia interna de uma corrente a alta pressão em trabalho no eixo. Quando vapor d'água fornece a força motriz, como em uma planta de potência, o dispositivo é chamado de turbina; quando é um gás a alta pressão, como amônia ou etileno em uma planta química ou petroquímica, o dispositivo é chamado de expansor. Segue a figura para melhor entendimento:

Fonte 1: Smith (2007)

A passagem do vapor provoca impulsos, que são empregados às pás, causando um momento motor resultante, girando o rotor.

Quando a velocidade do vapor não possui valores altos, é comum considerar as variações de energia cinética e energia potencial nulas, vale ressaltar que picos altos de velocidade normalmente são obtidos na saída dos expansores. "A conversão de energia ocorre à medida que o vapor se expande no interior do cilindro, deslocando o êmbolo, que, por sua vez, aciona o sistema biela - manivela produzindo trabalho no eixo." FERRAZ (2008).

FERRAZ ainda explica que é preciso duas etapas para a transformação de energia em vapor. Primeiro a energia contida no vapor é transformada em energia cinética. Isso ocorre mediante ao escoamento do vapor através de orifícios, denominados expansores, com área de passagem menor há um aumento da velocidade, aumentando assim a energia cinética, consequentemente a entalpia é diminuída. No expansor também acontece o aumento do volume específico do vapor, quedas de pressão e temperatura.

Logo após essa energia que foi adquirida no expansor é transformada em trabalho mecânico, para isso, é considerado a obtenção desta energia através dos princípios de ação ou de reação.

2.2 CONCEITOS TERMODINÂMICOS

Na termodinâmica a segunda lei diz que a variação da entropia do universo sempre maior ou igual à zero após um processo. A igualdade aparece em processos reversíveis, neste caso a termodinâmica admite reversão temporal nos mesmos moldes que a mecânica microscópica, já que esses processos ocorrem com deslocamentos sucessivos e quase estáticos dos estados de equilíbrio do sistema acoplado ao resto do universo de maneira a manter constante a entropia total. (P.M.C. de Oliveira e K. Dechoum 2003).

Kelvin (1824-1907) – Plank (1858-1947) estabelecem o desequilíbrio entre Trabalho e Calor, ou seja, é impossível obter uma eficiência total na conversão de calor em trabalho, sempre haverá perda de energia por dissipação para regiões com temperaturas mais baixas. Sendo assim é improvável a construção de uma máquina cíclica, que retire calor de uma fonte e a converta integralmente em trabalho.

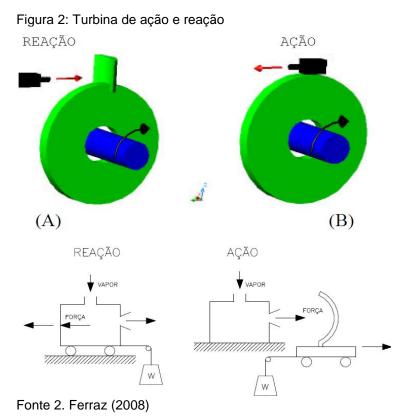
Diz SMITH (2007) que a segunda lei se baseia em um entendimento geral das propriedades, não havendo relação com conhecimento estrutural da matéria ou do comportamento das moléculas. A origem do estudo acontece através das máquinas térmicas, dispositivos ou máquinas que através de um processo cíclico produzem trabalho a partir do calor. O trecho abaixo exemplifica o contexto:

Estão necessariamente presentes, em todos os ciclos de máquinas térmicas, a absorção de calor pelo sistema em altas temperaturas, a rejeição de calor para a vizinhança em temperaturas mais baixas e a produção de

trabalho. No tratamento teórico de máquinas térmicas, os dois níveis de temperatura que caracterizam a sua operação são mantidos por reservatórios de calor, corpos supostamente capazes de absorver ou rejeitar uma quantidade infinita de calor sem variação de temperatura. Na operação, um fluido de trabalho de uma máquina térmica absorve calor QQ de um reservatório quente, produz uma quantidade líquida de trabalho W, descarta calor QF para um reservatório frio, e retorna ao seu estado inicial.

SMITH, 2007, p. 119

Segundo SULATO (2008) a termodinâmica explica, que "o vapor ocupa umas posições favoráveis, transformando em energia mecânica parte da energia térmica que consome. Sua eficiência pode ser considerada boa, especialmente nas turbinas de grandes capacidades acionadas por vapor de alta pressão".


Smith et al. (2007), exemplifica o conceito ao descrever que de acordo com a 2ª Lei da Termodinâmica, apenas parte da energia contida no vapor é convertida em trabalho. O que não é transformado é descartado pelas máquinas térmicas.

Considerando que para o cálculo da eficiência é usada as seguintes premissas:

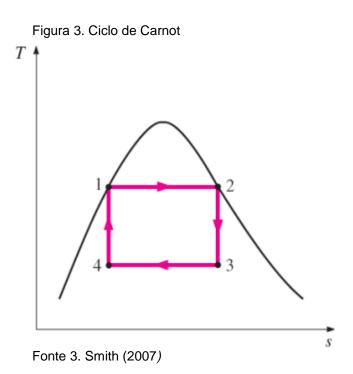
- Levantamento das variáveis de projeto;
- Busca do processo ideal correspondente;
- Adotar a relação entre a energia oferecida e as irreversibilidades associadas ao processo.

2.2.1 Princípio da ação e da reação

No século XVII após estudos e nada se saber ainda sobre máquinas térmicas, Newton observou em uma interação entre dois corpos, como a força era exercida de um corpo para outro e como essa força era devolvida, assim ele estabeleceu o Princípio da Ação e Reação. "Toda ação provoca uma reação de igual intensidade e direção, porém, em sentido contrário."

Considerando o vapor em fluxo contra um anteparo móvel e um expansor fixo, a força de ação deste vapor deslocará o anteparo e o peso W como ilustrado na estrutura B da figura 2. No caso de um expansor móvel, a força de reação deslocará ele e o peso W em direção oposta à do vapor, como visto na estrutura A da figura 2. Em ambas situações a energia do vapor foi transformada em energia cinética no expansor e esta energia cinética, então, convertida em trabalho. Então, é possível dizer que as foças sempre atuarão em pares, pois é impossível haver uma ação sem reação, dessa maneira a resultante também não será nula, já que a atuação ocorre em corpos diferentes.

FERRAZ (2008) complementa que a força da pressão em qualquer parede se equilibra com a pressão exercida na parede contraria, o repouso da caixa ocorrerá quando houver o equilíbrio das forças. Caso haja um furo na caixa e se neste furo for inserido um expansor, o impulso de vapor neste ponto será menor que o da parede oposta. Consequentemente, a caixa irá se mover em direção adversa, devido a oscilação das forças envolvidas.


2.3 CICLOS DE POTÊNCIA A VAPOR

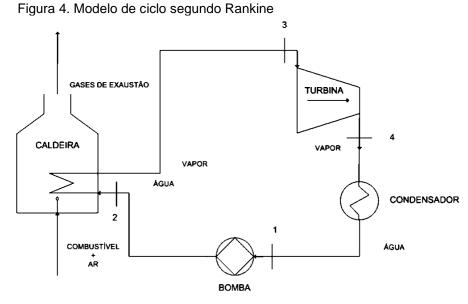
2.3.1 Ciclo a vapor de Carnot

Em 1824 foi criada uma máquina térmica onde o rendimento obtido seria o máximo possível alcançado. Ela foi idealizada pelo cientista francês Carnot, sendo assim ficou conhecido o ciclo de Carnot, onde há duas transformações isotérmicas e adiabáticas de maneira alternada. Com isso foi observado menores perdas de energia para a vizinhança.

PETRIN (2006) explica que dentro da região de saturação do ciclo de Carnot, considerando que o fluído usado é uma substância pura existem os seguintes processos:

- Expansão isotérmica reversível: O calor recebido do sistema advém da fonte de aquecimento.
- Expansão adiabática reversível: Não há troca térmica entre o sistema e as fontes.
- Compressão isotérmica reversível: A fonte de resfriamento recebe calor do sistema.
- Compressão adiabática reversível: Não há troca de calor entre o sistema e as fontes térmicas

Onde:


- 1-2: Fornecimento de calor isotérmico e reversível (caldeira)
- 2-3: Expansão reversível e adiabática (turbina)
- 3-4: Rejeição de calor isotérmica e reversível (condensador)
- 4-1: Compressão reversível e adiabática (compressor)

2.3.2 Ciclo a vapor de Rankine

Quando se trata de operações que envolvem turbinas a vapor o ciclo de Rankine é o que melhor descreve o funcionamento. A geração de trabalho se dá na vaporização e condensação alternada do fluído.

Considerando que o ciclo de Rankine é um ciclo fechado, o fluído sempre será reutilizado. Este ciclo é o utilizado no complexo industrial estudado, a eficiência deste ciclo é de suma importância para o aproveitamento da geração de energia.

A Figura abaixo demonstra de forma didática os equipamentos que formam um circuito de geração energética segundo os conceitos de Rankine. De acordo com o ciclo esta unidade é formada por quatro equipamentos. A turbina e a bomba hidráulica, onde as zonas de alta e baixa pressão são divididas, a caldeira e o condensador fornecem e retiram energia do sistema.

Fonte 4. Strobel (2001)

A imagem a cima demonstra o funcionamento da máquina térmica segundo conceitos estipulados por Rankine, onde:

- Na bomba ocorre bombeamento adiabático 1 a 2;
- Na pressão constante a água é transformada em vapor 2 a 3;
- Expansão adiabática na turbina 3 a 4;
- Vapor é condensado em pressão constante no condensador 4 a 1.

2.4 PRODUÇÃO DE ÁCIDO SULFÚRICO

O processo a seguir foi retirado do descritivo de processo da planta de ácido sulfúrico da empresa

2.4.1 Matéria-prima

A matéria-prima utilizada é o enxofre com as seguintes características:

- Pureza: 99,89% (base seca);
- Densidade: 1,3 1,4 t/m³ (sólido e densidade aparente);
- Densidade: 1,78 1,80 t/m³ (fundido 120-150 °C);
- Ponto de fusão: 118,9 °C;
- Calor de fusão: 37 kcal/kg de enxofre (base seca).

2.4.2 Produto

O ácido sulfúrico produzido apresenta as seguintes características:

- Concentração: 98,0% a 98,5% (em peso);
- Densidade: 1,834 t/m³ (40 °C);

2.4.3 Reações químicas

O processo de fabricação de ácido sulfúrico consiste na queima de Enxofre (S) com ar para formar dióxido de Enxofre (SO₂), combinando o dióxido de Enxofre com Oxigênio (O₂) para formar trióxido de Enxofre (SO₃) e combinando trióxido de Enxofre

com água (H_2O) para formar a solução contendo Ácido Sulfúrico (H_2SO_4) na concentração entre 98,5 % – 98,80 %. As reações são expressas como:

- Queima de enxofre: S + O₂ → SO₂ + Calor
- Conversão do SO₂: SO₂ + ½ O₂ → SO₃ + Calor
- Absorção do SO₃: SO₃ + H₂O → H₂SO₄ + Calor

2.4.4 Descrição do processo

2.4.4.1 Recebimento do enxofre

O enxofre sólido é recebido por caminhões, de onde é descarregado na moega rodoferroviária.

A pesagem dos caminhões ocorre através da balança da unidade industrial de Araxá e encaminhada para o descarregamento do enxofre.

O enxofre recebido na moega rodoferroviária passa por duas correias transportadoras. Essas duas correias transferem o enxofre para a correia transportadora de enxofre, que elevará o enxofre até à correia transportadora reversível, que por sua vez, distribui o enxofre de forma homogenia no pátio de estocagem. Esse pátio de estocagem tem capacidade de armazenagem de até 25.000 toneladas de enxofre.

A capacidade de descarga de enxofre é de 200 t/h, que correspondem a três vagões/hora. O enxofre é recolhido por pá carregadeira e alimentado nas moegas de enxofre. Para cada moega, existe uma correia extratora / transportadora que alimenta o enxofre ao fundidor.

2.4.4.2 Etapa de fusão do enxofre

A planta conta com dois fundidores, que são responsáveis pelo envio de material para a fusão I e fusão II, estas unidades são de igual capacidade e independentes entre si.

Nos fundidores, o enxofre sólido entra em contato com o enxofre fundido que se encontra sob agitação, ocorrendo uma boa e uniforme distribuição do enxofre

sólido no meio do enxofre fundido. Isso favorece a liberação da umidade do enxofre e a fusão. Um tubo de transbordo transfere o enxofre líquido para o tanque de bombeamento de enxofre sujo, onde a massa de enxofre fundido também se encontra sob agitação.

Também no tanque de bombeamento de enxofre sujo há aquecedores alimentados por vapor que fornecem calor à massa de enxofre fundido, com o objetivo de mantê-lo quente (O vapor alimentado aos aquecedores do sistema de fusão de enxofre é proveniente da planta de ácido sulfúrico, onde tem sua pressão rebaixada até 7,0 kgf/cm²).

O vapor utilizado nas camisas das tubulações que transportam o enxofre fundido sujo, filtrado e o vapor alimentado nas serpentinas dos tanques de enxofre sujo, também são provenientes da planta de ácido sulfúrico, onde sua pressão é rebaixada para 3,5 kgf/cm².

2.4.4.3 Etapa de filtragem do enxofre

Uma vez aquecido e fundido até uma temperatura aproximada de 140°C, o enxofre líquido é bombeado até a etapa de filtração, onde filtros de telas (60 m² de área cada e em seguida refiltrado nos filtros de 30 m²), são responsáveis pela remoção das impurezas insolúveis contidas neste insumo.

Já filtrado e com pureza próxima a 99,99%, esta matéria-prima será estocada em dois tanques, tanques estes isolados termicamente e com linhas de vapor ao redor dos mesmos para auxiliar a manter a temperatura constante e ótima para o bombeamento e alimentação das unidades de produção de ácido sulfúrico.

Desses tanques, o enxofre é alimentado por gravidade para o tanque de bombeamento de enxofre filtrado, de onde será alimentado ao queimador de enxofre com auxílio das bombas.

2.4.4.4 Unidade de produção de ácido sulfúrico

O ar atmosférico é captado através de filtros de ar e é comprimido nos sopradores que lhe proporciona a força motriz para impulsionar os gases através dos

equipamentos à jusante do soprador. O ar que sai dos sopradores vai para a torre de secagem, onde o vapor de água contido no ar é removido por contato em contracorrente com o H₂SO₄ 98,50% - 98,80%. Da torre de secagem o ar seco entra no queimador de enxofre, onde o enxofre é pulverizado sob alta pressão e queimado, formando o dióxido de enxofre SO₂.

A combustão do enxofre é uma reação exotérmica (com liberação de calor), o que torna necessário resfriarem os gases da combustão. A temperatura dos gases SO₂/SO₃/Ar que saem do queimador de enxofre, é de 1100 °C, ou seja, mais alta que a temperatura máxima requerida para a entrada no sistema de conversão; por isso, os gases são esfriados na caldeira de recuperação, na qual se recupera o calor na forma de vapor saturado de alta pressão. A temperatura dos gases que deixam a Caldeira é controlada por um *bypass* dos gases na Caldeira. A temperatura do vapor na Caldeira é em função da pressão do mesmo.

2.4.4.5 Etapa de conversão do SO₂

A oxidação de dióxido a trióxido de enxofre, que é também exotérmica, ocorre em quatro leitos catalíticos, contidos em um conversor. O composto químico responsável pela reação catalítica é o pentóxido de vanádio (V₂O₅). Na saída de cada um dos leitos os gases são resfriados até a temperatura apropriada para que seja obtida uma maior conversão de dióxido para trióxido de enxofre no leito seguinte.

Os gases que saem do primeiro passo do conversor fluem para o superaquecedor onde são esfriados enquanto aquecem o vapor, que é exportado. A temperatura dos gases de saída é controlada em uma faixa adequada, desviando-se parte dos gases por um *bypass* de gás do superaquecedor. A corrente de gases frios flui do superaquecedor para o segundo passo do conversor, onde acontece a conversão adicional do dióxido de enxofre para trióxido de enxofre, acompanhado por geração adicional de calor.

Os gases quentes, saindo do segundo passo do conversor são esfriados ao passar pelo trocador de calor Gás/Gás quente, para melhorar a conversão na próxima passagem pelo catalisador. A temperatura de saída dos gases do trocador de calor Gás/Gás quente é controlada por um *bypass* existente no lado casco. Os gases frios que deixam o trocador de calor Gás/Gás quente fluem para o terceiro passo do

conversor onde ocorre a conversão adicional do dióxido de enxofre para trióxido de enxofre. Os gases quentes após saírem do terceiro passo do conversor são esfriados e conduzidos através do trocador de calor Gás/Gás frio e, em seguida, pelo lado do casco do economizador, seguindo para a torre de absorção intermediária.

2.4.4.6 Etapa de absorção do SO₃

Na torre de absorção intermediária, o SO₃ é removido da corrente de gases, quando os gases entram em contato com o ácido sulfúrico em circulação. A temperatura do H₂SO₄ 98,0 – 99,0% que circula na torre de absorção intermediária aumenta devido ao calor sensível da corrente de gases que é alimentada à torre e pelo calor produzido com a formação do H₂SO₄.

O ácido do fundo da torre de absorção Intermediária é drenado para o tanque de bombeamento, onde às correntes de ácido proveniente das outras duas torres se encontram. Do tanque de bombeamento, o ácido é bombeado através dos resfriadores de ácido, circulando de volta para o topo das torres. Água em quantidade controlada é adicionada ao tanque de bombeamento para controlar a concentração do ácido que circula nas torres entre 98,20 – 99,88% H₂SO₄.

Os gases frios que deixam a da torre de absorção intermediária, contendo SO₂ não absorvido, fluem pelo interior dos tubos, primeiro do trocador de calor Gás/Gás frio e em seguida do trocador de calor Gás/Gás quente, onde é aquecido pelos gases quentes que provêm do segundo e terceiro passos do conversor, respectivamente.

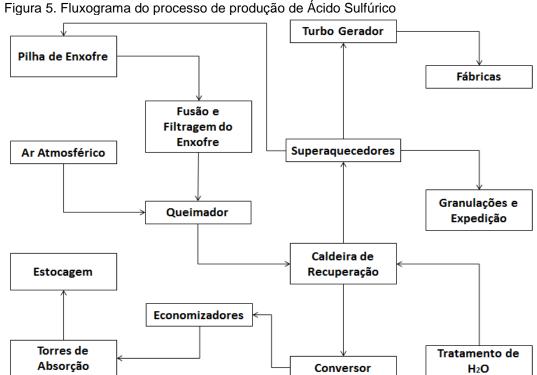
Do trocador de calor Gás/Gás quente, a corrente de gases flui para o quarto passo do conversor onde a conversão final do SO₂ para SO₃ é completada. A temperatura dos gases que entram no quarto passo do conversor é controlada desviando-se parte dos gases pelos *bypass* existente no lado dos cascos dos trocadores de calor Gás/Gás quente e frio. Os gases saindo do quarto passo entram no economizador onde são esfriados pela água de alimentação da Caldeira. (Um *bypass* no lado da água é usado para controlar a temperatura dos gases na saída de ambos os economizadores).

A temperatura de saída dos gases pode ser ajustada de modo a evitar a condensação de ácido sulfúrico nos economizadores. Os gases saindo do

economizador entram na torre de absorção final antes de serem eliminados na a atmosfera através da chaminé. Na torre de absorção final o SO₃ da corrente de gases reage com água contida no ácido sulfúrico circulante a 98,20 – 98,80%. A temperatura do ácido que circula na torre de absorção final aumenta devido ao calor de formação e ao calor sensível da corrente de gases entrando na Torre. O ácido do fundo da torre de absorção final circula através do tanque de bombeamento é resfriado juntamente com o ácido das torres de absorção intermediária e de secagem.

O ácido proveniente do tanque de bombeamento é bombeado através dos resfriadores de ácido: Resfriador principal e preaquecedor de água de caldeira. As correntes de ácido provenientes dos dois resfriadores juntam-se em uma única corrente, que se divide novamente para a distribuição de ácido para as três torres. Cada torre é provida de controles de fluxo individuais e controle de temperatura. Uma derivação do fluxo de saída do é direcionada, do fluxo é levada até à sucção para o resfriador de produto, a temperatura é reduzida para 45 °C (temperatura permitida para evitar corrosão acelerada nas tubulações) fluindo em seguida para os tanques de estocagem.

2.4.4.8 Geração de vapor d'água


Como visto, o processo de produção de ácido sulfúrico é extremamente exotérmico, ou seja, as reações químicas em cada etapa do processo liberam uma grande quantidade de calor. Com isso o controle de temperatura e pressão no decorrer do processo é de suma importância, para se produzir a maior quantidade de vapor e obter a máxima conversão de dióxido de enxofre e absorção de trióxido de enxofre.

A água bruta da barragem A0 é bombeada para os tanques de água bruta, onde é adicionado hipoclorito de sódio. Dos tanques de água bruta, a água é direcionada para duas estações de tratamento (ETA I e ETA II). Cada estação é independente e composta por duas linhas em paralelo, e cada linha correspondente a um clarificador compacto seguido de um filtro de areia de fluxo ascendente. Todas as quatro linhas de operação alimentam dois tanques de água clarificada.

Essa água clarificada é utilizada para consumo humano, make-up da bacia da torre de resfriamento e produção de água desmineralizada. Existem três cadeias independentes de desmineralização composta por leito de carvão ativado, leito

catiônico, leito aniônico e leito misto (cada). A água desmineralizada produzida é direcionada para dois tanques.

Desses tanques, a água é direcionada para dois desaeradores spray, de onde é bombeada para os economizadores seguindo para o tubulão da caldeira de recuperação. Essa caldeira é flamotubular e tem capacidade de geração de 111 t/h de vapor a 44 bar. Após a caldeira, o vapor é direcionado para um superaquecedor, onde é aquecido a 404°C e posteriormente é admitido em duas turbinas de condensação. O condensado das turbinas retorna para os desaeradores.

Fonte 5 : Descritivo de processo (2018)

A FIGENER é uma empresa especializada na área de gestão energética, esta realizou uma consultoria no sistema de geração de energia da empresa em 2012 e segundo dados obtidos, o sistema de vapor é composto pela caldeira de recuperação da unidade de produção de ácido sulfúrico que produz aproximadamente 105 t/h de vapor a 42 bar de pressão. O vapor de alta pressão é introduzido em duas turbinas a vapor de condensação com extrações intermediárias na pressão de 8 bar ele é consumido em outros processos produtivos da unidade.

Estes consomem aproximadamente 22 t/h de vapor, sendo assim a maior parte do vapor produzido é condensado nos turbogeradores para a produção de energia elétrica. Segundo a curva das turbinas (projeto) este valor seria de aproximadamente 22MWh (Apêndice I).

Sabe-se que existe apenas um instrumento na extração da turbina B para medir o fluxo de vapor e que não existem medidores de fluxo na entrada das turbinas.

Os dados para o cálculo foram obtidos com o setor de automação da empresa, onde são computados os valores dos instrumentos de medição de vazão, pressão e temperatura dos turbogeradores.

Conforme mencionado na metodologia os rendimentos para a extração são calculados com base nas condições de temperatura e pressão do vapor admitido. Para a condensação o rendimento é ajustado com base na potência de saída do gerador.

3.1 DADOS OPERACIONAIS E DE PROJETO DAS TURBINAS

Primeiramente foi solicitado ao setor de automação os dados dos instrumentos de medição de pressão e temperatura dos turbogeradores. Após análise de produtividade, notou-se maior estabilidade da planta industrial no intervalo do dia 22/12/2017 a 25/12/2017. Estes são suficientes para os cálculos nas condições reais das máquinas, uma vez que as vazões permanecem estacionárias por certo período. Os dados podem ser vistos nas tabelas abaixo:

Tabela 1: Dados operacionais Turbina A

	T Ext	P Ext	T Ext	P Ext	T Saída	P Saída
DATA	Entrada	Entrada	Saída	Saída	Cond	Cond
	°C	Kgf/cm ²	٥C	Kgf/cm ²	٥C	Kgf/cm ²
22/12/2017	403,72	43,45	249,55	7,34	51,26	-0,57
23/12/2017	403,30	43,54	248,64	7,34	51,90	-0,56
24/12/2017	404,11	43,38	248,52	7,23	52,37	-0,55
25/12/2017	403,56	43,83	255,82	7,26	52,83	-0,53

Fonte 6 : Setor de automação da unidade industrial

Tabela 2 : Dados operacionais turbina B

	T Ext	P Ext	T Ext	P Ext	T Saída	P Saída
DATA	Entrada	Entrada	Saída	Saída	Cond	Cond
	°C	Kgf/cm ²	°C	Kgf/cm ²	°C	Kgf/cm ²
22/12/2017	404,99	40,89	245,32	7,23	49,97	-0,79
23/12/2017	404,50	40,87	243,54	7,23	50,17	-0,79
24/12/2017	405,39	40,57	241,86	7,23	49,06	-0,79
25/12/2017	404,85	41,02	240,23	7,23	49,60	-0,79

Fonte 7 : . Setor de automação da unidade industrial

Além dos históricos, foram coletados os dados de projeto dos TGs. Os TGs A e B são iguais.

Os dados do condensador do TGA foram obtidos no book da GEA, subfornecedora do condensador, enquanto que os dados do condensador do TGB foram obtidos no "Manual de Operação da Planta de Ácido Sulfúrico".

Tabela 3. Dados de projeto dos turbogeradores

Dados de projeto dos turbogeradores			
Tipo	Condensação		
Número de estágio	11 Rateau (6+5)		
Tipo de rotor	Integral		

Tipo dos estágios	Baixa reação
Rotação da turbina/gerador	6.500/1.800 rpm
Potência nominal do gerador	11.500 kW
Pressão de admissão	43,0 bar abs
Temperatura de admissão	400 °C
Pressão de extração	8 bar abs
Temperatura de extração	220 °C
Pressão de escape	0,11 bar abs
Temperatura de escape	48 °C

Fonte 8. Book GEA

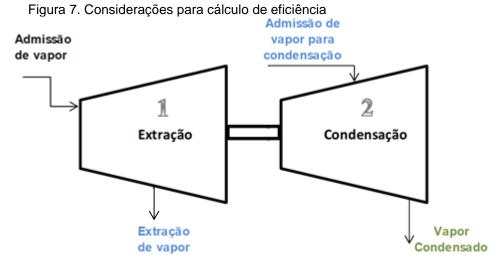
Apesar dos turbogeradores serem iguais, os condensadores foram fornecidos por fabricantes diferentes. A seguir são apresentados os dados de cada um deles.

Tabela 4. Dados projeto dos condensadores

CONDENSADOR	Turbina A	Turbina B
Tipo	Casco / Tubo	Casco / Tubo
Fluxo do vapor de projeto	49,1 t/h	50,57 t/h
Temperatura da água na entrada	30°C	30 °C
Temperatura da água na saída	40°C	40 °C
Temperatura de condensação	47,7	47,6°C
Pressão de trabalho (lado vapor)	0,112	0,1122
N de passes do casco / tubo	1/2	1/3
Consumo água de resfriamento	2.600.000 kg/h	2.480.000 kg/h
Área de troca	793,51 m²	715 m²
Capacidade	26.241.610 kcal/h	24.800.000 kcal/h
Coeficiente de troca limpo	3.381,8 kcal/h.m².°C	3.434 kcal/h.m ² .°C
Coeficiente de troca sujo	2.796,6 kcal/h.m².°C	2.919 kcal/h.m².°C

Fonte 9. Book GEA

3.2 METODOLOGIA DE CALCULO


Seguindo as premissas utilizadas em uma planta similar os dois turbogeradores em questão são de extração com condensação (conforme esquema da Figura 6).

Admissão Pressão Temperatura Vazão Energia Elétrica Gerador Turbina Redutor Extração Condensação Pressão Pressão Temperatura Temperatura Vazão Vazão

Figura 6. Esquema de funcionamento dos co-geradores

Fonte 10. Relatório de co geração (2015)

Para cálculo de eficiência de turbinas de dois estágios (extração e condensação), a primeira premissa a ser adotada é considerar que são turbinas separadas (duas turbinas acopladas entre si) uma extraindo e outra condensando, conforme figura abaixo.

Fonte 11. Relatório de co geração (2015)

Para o cálculo da eficiência da extração (1) da turbina admite-se a diferença de entalpia do vapor de admissão pelo vapor de extração, este valor é dividido pela entalpia deste vapor considerando um processo isentrópico.

$$\eta ext = \frac{\Delta H}{\Delta H s'} \tag{1}$$

Onde:

η = Eficiência da turbina

ΔH = Entalpia do vapor de admissão menos entalpia do vapor de extração

ΔHs' = Entalpia do vapor de admissão menos entalpia do vapor de extração em processo isentrópico.

2. Na condensação (2) para a eficiência, primeiramente calcula-se o título do vapor considerando que seja um processo isentrópico.

$$S = SL + xv * (SV - SL)$$
 (2)

Onde:

S = Entropia do vapor admitido na condensação

SL = Entropia do líquido na pressão de condensação

Sv = Entropia do vapor saturado do vapor admitido na condensação

Xv = Título do vapor

3. Com o valor do título de vapor, é possível calcular a entalpia (isentrópica) da condensação utilizando a equação abaixo:

$$Hs = HL + xv * (Hv - Hl)$$
 (3)

Onde:

Hs = Entalpia do vapor admitido na condensação (Isentrópico)

HL = Entalpia do líquido na pressão de condensação

Hv = Entalpia do vapor saturado do vapor admitido na condensação

Xv = Título do vapor (isentrópico)

4. Para obtenção do valor da eficiência da condensação, utiliza-se:

$$\eta cond = \frac{\Delta H}{\Delta H s'}$$
 (4)

Onde:

ηcond = Eficiência da turbina na condensação

ΔH = Entalpia do vapor de admissão menos entalpia do vapor de extração

ΔHs' = Entalpia do vapor de admissão menos entalpia do vapor de extração em processo isentrópico.

Como citado anteriormente, na metodologia de cálculo para turbinas com dois ou mais estágios é utilizado como premissa que a turbina se subdivide a cada descarga. Para a eficiência isso também não é diferente, os cálculos não permitem uma eficiência global para a turbina de dois estágios e então as eficiências encontradas são analisadas separadamente a cada estágio. Neste caso, tem-se a eficiência da extração de vapor à pressão de 8 bar e outra eficiência para a condensação a 0,11 bar, conforme projeto.

Outra premissa adotada é de que a energia total gerada na turbina sofre uma perda ou dissipação de 7% até a chegada aos bornes do gerador. Então, após o cálculo de eficiência, onde todas as entalpias e entropias já são conhecidas, utilizaremos a equação abaixo para encontrar o trabalho que o vapor realiza no eixo da turbina:

$$Weixo = (Qadm \ x \ \Delta Hext) + (Qcond \ x \ \Delta Hcond) * (-1)$$
(5)

Onde:

Weixo: Trabalho

Qadm: Vazão de vapor no bocal da admissão

ΔHext: Diferença de entalpia entre o vapor admitido e o vapor extraído

Qcond: Vazão de vapor no bocal da condensação

ΔHcond: Diferença de entalpia ente o vapor após passagem pela extração e o vapor condensado.

Multiplica-se por (-1), pois, esta é a energia que o vapor perde ao exercer trabalho no eixo, então o valor encontrado é negativo e após esta multiplicação passa a ser positivo.

A partir daí é feito a multiplicação do trabalho no eixo, sofrendo a perda de 5 a 7% até a chegada aos bornes do gerador.

$$EnergiaGerada = Trabalhoeixo x 0,93$$
 (6)

Consultando a tabela de vapor superaquecido do apêndice B e utilizando a equação 1 foi possível calcular a eficiência na extração das duas turbinas, foi observado que o TG B apresentou uma maior eficiência que o TG A, vale ressaltar que os dados foram coletados em um período favorável, onde a planta estava rodando em carga nominal.

Pode-se dizer que a turbina B possui um melhor aproveitamento energético na extração já que a mesma tem uma temperatura de saída na extração menor que a turbina A.

Tabela 5 : Eficiência na extração das turbinas

Turbina	22/12/2017	23/12/2017	24/12/2017	25/12/2017	Média
Α	81,72%	81,94%	82,62%	77,16%	80,86%
В	87,71%	87,35%	89,25%	89,74%	88,51%

Fonte 12 : Autor

Com a equação 2 foi possível calcular o título do vapor, para este valor levouse em consideração o processo ocorrendo nas condições de projeto. O valor encontrado foi de **94,38**%, considerado aceitável já que a fração de vapor deve ser mantida sempre alta, assim evita-se a presença da água no vapor superaquecido, evitando danos nas lâminas das turbinas.

Para calcular a eficiência de condensação na equação 4, primeiro foi necessário encontrar o valor da entalpia isentrópica na admissão da condensação na equação 3. Abaixo, segue os resultados da eficiência na condensação das turbinas:

Tabela 6 : Eficiência na condensação das turbinas

Turbina	22/12/2017	23/12/2017	24/12/2017	25/12/2017	Média
Α	59,52%	59,54%	59,46%	59,41%	59,48%
В	63,48%	63,35%	63,45%	63,38%	63,41%

Fonte 13 : Autor

Como visto, a turbina A apresenta eficiência na condensação abaixo do esperado, nota-se que esta, opera em condições desfavoráveis, já que sua pressão de descarga é maior que a de projeto, consequentemente a geração de energia é menor pois há uma redução na entalpia do vapor na turbina.

Após análise com colaboradores da empresa foi constatado que existe um defeito no sistema de vácuo do TG A, levando a necessidade de se operar com o sistema de vácuo na partida. Como o consumo de vapor do sistema de vácuo de partida é bastante superior ao do sistema de operação, então há uma redução de geração e um consumo extra de vapor.

Alguns fatores foram pontuados para explicar a deficiência deste sistema:

- Desigualdade na distribuição de água de resfriamento das turbinas: A falta de medidores de vazão da água ade resfriamento na entrada dos condensadores, levanta a suspeita que a turbina A possa estar recebendo um fluxo inferior ao necessário.
- Deficiência na vazão de água dos intercondensadores do sistema de vácuo da turbina A.
- Infiltração de ar no sistema de vácuo.
- Incrustação no condensador e no intercondensador.

Esses itens foram pontuados como os mais críticos, algumas medidas podem ser tomadas para melhorar o sistema de geração de energia:

- Aquisição de medidores de vazão para controle da vazão de água de resfriamento de entrada.
- Uma limpeza e inspeção minuciosa no condensador e todas as suas partes para identificação de pontos de corrosão e incrustação.

O TG B também não apresentou uma eficiência satisfatória, ao analisar o equipamento não foi constatado anormalidades, sugere-se a calibração dos instrumentos de medição.

Por fim calculou-se em MWh a geração de energia de ambas as turbinas. Vale ressaltar que não existem medidores de vazão nas entradas das turbinas e na admissão da condensação, por este motivo utilizou-se a vazão de entrada de projeto:

Tabela 7 : Geração de energia das turbinas

Turbina	22/12/2017	23/12/2017	24/12/2017	25/12/2017	Média
A (MWh)	9,42	9,46	9,56	8,75	9,30
B (MWh)	10,27	10,40	10,70	10,77	10,53

Fonte 14: Autor

É possível notar que o TG B apresentou resultados próximos ao de projeto (11 MWh), analisando a perda de geração pode-se considerar normal, já que em qualquer processo existem perdas na produção.

A tabela abaixo representa os custos calculados nos dias observados:

Tabela 8 : Cálculo de custos

Data	Perda da Turbina A	Perda da Turbina B	Custo de 1 MWh	Custo anual Turbina A	Custo Anual Turbina B
	MWh	MWh	R\$	R\$	R\$
22/12/2017	1,58	0,73	130,33	1.685.987,43	779.783,72
23/12/2017	1,54	0,60	130,33	1.647.233,74	645.935,55
24/12/2017	1,44	0,30	130,33	1.543.290,76	323.035,57
25/12/2017	2,25	0,23	130,33	2.405.085,02	247.345,00
Média	1,70	0,47	130,33	1.820.399,24	499.024,96

Fonte 15 : Autor

O TG A apresenta uma perda significativa na geração, sendo de 1,70 MWh, portanto gera maior prejuízo para a empresa já que 1,0 MWh custa em média R\$ 130,30 (Cento e trinta reais e trinta centavos). Então, em termos numéricos: Operação em 360 dias 24 horas por dia, considerando um aproveitamento anual de 90% (Onde dos 360 dias do ano a fábrica opere 324) tem-se:

Custo energético
$$\times$$
 perda de Geração \times 360 \times 24 \times 90,0 % (7)

Ou seja, atualmente a baixa geração da turbina A custa para a empresa anualmente R\$ 1.820.399,24 (Um milhão oitocentos e vinte mil trezentos e noventa e nove reais e vinte e quatro centavos).

Em contrapartida, a turbina B apresenta uma perda de 0,47 MWh, utilizando o mesmo cálculo de custo a perda anual para a empresa gira em torno de R\$ 499.024,96 (Quatrocentos e noventa e nove mil reais e noventa e seis centavos).

Recomenda-se a compra de medidores de vazão para ambas as turbinas, assim será possível obter resultados mais precisos.

CAPÍTULO V: CONCLUSÃO

Alguns fatores favorecem a perda de eficiência das máquinas. As variações das condições de temperatura e pressão em relação às condições de projeto interferem nesta perda de rendimento. Estas variações também são relevantes quando avaliadas as condições de extração e condensação. Conclui-se que a turbina A possui uma perda de 15% na geração de energia, ou seja, cerca de 1,7 MWh dependendo do cenário de cogeração e comparado com as condições de projeto. O turbogerador B está com a geração real mais próximo ao de projeto, podendo considerar também que os indicadores das condições reais (vazão, pressão e temperatura) sofrem variações, se comparado com as condições ótimas de projeto. Seu rendimento (Real/Projeto) é de 95% da energia produzida com as condições de projeto.

REFERÊNCIAS

SULATO, Alan. MÁQUINAS TÉRMICAS AT-056. Disponível em: http://www.madeira.ufpr.br/disciplinasalan/AT056-Aula09.pdf. Acesso em Maio de 2018.

OLIVEIRA, Reginaldo. **FERRACIOLI**, Laércio. SEGUNDA LEI DA TERMODINÂMICA. Disponível em: http://api.adm.br/GRS/referencias/segunda_lei_da_termodinamica.pdf>. Acesso em Maio de 2018.

OLIVEIRA, P.M.C. **DECHOUM**, K. FACILITANDO A COMPREENSAO DA SEGUNDA LEI DA TERMODINAMICA. Disponível em: http://www.scielo.br/pdf/rbef/v25n4/a04v25n4. Acesso em Maio de 2018.

SMITH, J. M., Van Ness, H. C. e Abbott, M. M., INTRODUÇÃO À TERMODINÂMICA DA ENGENHARIA QUÍMICA, 7a Ed., LTC – Livros Técnicos e Científicos Editora, Rio de Janeiro, 2007.

SOLIDDA ENERGIA. SISTEMAS PARA GERAÇÃO TERMOELÉTRICA E COGERAÇÃO. Disponível em: http://www.solidda.com.br/sistemas-para-geracao-termoeletrica-e-cogeracao. Acesso em Maio de 2018.

UNICAMP. CICLOS DE POTENCIA A VAPOR. Disponível em: < http://www.fem. unicamp.br/~franklin/ES672/pdf/turbina_vapor_ciclo.pdf >. Acesso em Maio de 2018.

UFSC. CICLOS DE POTÊNCIA A VAPOR. Disponível em: < http://www.polo.ufsc. br/fmanager/polo2016/materiais/arquivo6_1.pdf >. Acesso em Maio de 2018.

PETRIN, N. CICLO DE CARNOT. Disponível em: < https://www.estudopratico.com.br/ciclo-de-carnot-rendimento-objetivo-e-funcionamento/ >. Acesso em Jul de 2018.

FERRAZ, F. TURBINAS A VAPOR. Disponível em: < https://fabioferrazdr.files. wordpress.com/2008/08/turbinas-a-vapor.pdf>. Acesso em Ago de 2018.

FIGNER, Relatório do estudo dos sistemas de co geração. Rev. 01. Data: 16 de Dezembro de 2011.

MEDEIROS, A. **ROSA**, E. **GUARATO**, L. AVALIAÇÃO TÉCNICA DOS TURBO-GERADORES GE-5101 / GE-5102. Data: 17 de Junho de 2015. Rev. 01.p

MOSAIC. DESCRITIVO DE PROCESSOS DA PLANTA DE ÁCIDO SULFÚRICO. Data: 14 de Janeiro de 2018. Rev. 06.p

Apêndice A - Curva de Desempenho da Turbina

Inlet pressure = 43,00 bar abs. Inlet tempreature = 400,00° C.

Pass out pressure = 8,00 bar abs.

Exhaust pressure = 0,110 bar abs.

Apêndice B - Tabelas Termodinâmicas

Tabela B.1 — Propriedades termodinâmicas da água

Tabela B.1.1

		Volume e (m³/		En	ergia inte (kJ/kg)	rna		Entalpia (kJ/kg)			Entropia (kJ/kg K)	
Temp. °C	Pressão kPa	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
Т	Р	V)	V _r	ш	Ulv	Uv	h	hlv	h _v	Sj	Slv	S _V
0,01	0,6113	0,001000	206,132	0,00	2375,33	2375,33	0,00	2501,35	2501,35	0,0000	9,1562	9,1562
5	0,8721	0,001000	147,118	20,97	2361,27	2382,24	20,98	2489,57	2510,54	0,0761	8,9496	9,0257
10	1,2276	0,001000	106,377	41,99	2347,16	2389,15	41,99	2477,75	2519,74	0,1510	8,7498	8,9007
15	1,705	0,001001	77,925	62,98	2333,06	2396,04	62,98	2465,93	2528,91	0,2245	8,5569	8,7813
20	2,339	0,001002	57,7897	83,94	2318,98	2402,91	83,94	2454,12	2538,06	0,2966	8,3706	8,6671
25	3,169	0,001003	43,3593	104,86	2304,90	2409,76	104,87	2442,30	2547,17	0,3673	8,1905	8,5579
30	4,246	0,001004	32,8922	125,77	2290,81	2416,58	125,77	2430,48	2556,25	0,4369	8,0164	8,4533
35	5,628	0,001006	25,2158	146,65	2276,71	2423,36	146,66	2418,62	2565,28	0,5052	7,8478	8,3530
40	7,384	0,001008	19,5229	167,53	2262,57	2430,11	167,54	2406,72	2574,26	0,5724	7,6845	8,2569
45	9,593	0,001010	15,2581	188,41	2248,40	2436,81	188,42	2394,77	2583,19	0,6386	7,5261	8,1647
50	12,350	0,001012	12,0318	209,30	2234,17	2443,47	209,31	2382,75	2592,06	0,7037	7,3725	8,0762
55	15,758	0,001015	9,56835	230,19	2219,89	2450,08	230,20	2370,66	2600,86	0,7679	7,2234	7,9912
60	19,941	0,001017	7,67071	251,09	2205,54	2456,63	251,11	2358,48	2609,59	0,8311	7,0784	7,909
65	25,03	0,001020	6,19656	272,00	2191,12	2463,12	272,03	2346,21	2618,24	0,8934	6,9375	7,830
70	31,19	0,001023	5,04217	292,93	2176,62	2469,55	292,96	2333,85	2626,80	0,9548	6,8004	7,755
75	38,58	0,001026	4,13123	313,87	2162,03	2475,91	313,91	2321,37	2635,28	1,0154	6,6670	7,682
80	47,39	0,001029	3,40715	334,84	2147,36	2482,19	334,88	2308,77	2643,66	1,0752	6,5369	7,612
85	57,83	0,001032	2,82757	355,82	2132,58	2488,40	355,88	2296,05	2651,93	1,1342	6,4102	7,544
90	70,14	0,001036	2,36056	376,82	2117,70	2494,52	376,90	2283,19	2660,09	1,1924	6,2866	7,479
95	84,55	0,001040	1,98186	397,86	2102,70	2500,56	397,94	2270,19	2668,13	1,2500	6,1659	7,415
100	101,3	0,001044	1,67290	418,91	2087,58	2506,50	419,02	2257,03	2676,05	1,3068	6,0480	7,354
105	120,8	0,001047	1,41936	440,00	2072,34	2512,34	440,13	2243,70	2683,83	1,3629	5,9328	7,2958
110	143,3	0,001052	1,21014	461,12	2056,96	2518,09	461,27	2230,20	2691,47	1,4184	5,8202	7,2386
115	169,1	0,001056	1,03658	482,28	2041,44	2523,72	482,46	2216,50	2698,96	1,4733	5,7100	7,1832
120	198,5	0,001060	0,89186	503,48	2025,76	2529,24	503,69	2202,61	2706,30	1,5275	5,6020	7,129
125	232,1	0,001065	0,77059	524,72	2009,91	2534,63	524,96	2188,50	2713,46	1,5812	5,4962	7,0774
130	270,1	0,001070	0,66850	546,00	1993,90	2539,90	546,29	2174,16	2720,46	1,6343	5,3925	7,026
135	313,0	0,001075	0,58217	567,34	1977,69	2545,03	567,67	2159,59	2727,26	1,6869	5,2907	6,977
140	361,3	0,001080	0,50885	588,72	1961,30	2550,02	589,11	2144,75	2733,87	1,7390	5,1908	6,929
145	415,4	0,001085	0,44632	610,16	1944,69	2554,86	610,61	2129,65	2740,26	1,7906	5,0926	6,883
150	475,9	0,001090	0,39278	631,66	1927,87	2559,54	632,18	2114,26	2745,44	1,8417	4,9960	6,837
155	543,1	0,001096	0,34676	653,23	1910,82	2564,04	653,82	2098,56	2752,39	1,8924	4,9010	6,793
160	617,8	0,001102	0,30706	674,85	1893,52	2568,37	675,53	2082,55	2758,09	1,9426	4,8075	6,750
165	700,5	0,001108	0,27269	696,55	1875,97	2572,51	697,32	2066,20	2763,53	1,9924	4,7153	6,707
170	791,7	0,001114	0,24283	718,31	1858,14	2576,46	719,20	2049,50	2768,70	2,0418	4,6244	6,666
175	892,0	0,001121	0,21680	740,16	1840,03	2580,19	741,16	2032,42	2773,58	2,0909	4,5347	6,6256
180	1002,2	0,001127	0,19405	762,08	1821,62	2583,70	763,21	2014,96	2778,16	2,1395	4,4461	6,585

Tabela B.1.1 (continuação) Água saturada: tabela em função da temperatura

		Volume e: (m³/		En	ergia inte (kJ/kg)	rna		Entalpia (kJ/kg)			Entropia (kJ/kg K)	
Temp. °C	Pressão kPa	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Ечар.	Vapor sat.
T	P	Vį	V_{ν}	u _j	u_{lv}	u_{ν}	hj	h_{h}	h,	s_j	s_{b}	$\mathcal{S}_{_{V}}$
185	1122,7	0,001134	0,17409	784,08	1802,90	2586,98	785,36	1997,07	2782,43	2,1878	4,3586	6,5464
190	1254,4	0,001141	0,15654	806,17	1783,84	2590,01	807,61	1978,76	2786,37	2,2358	4,2720	6,5078
195	1397,8	0,001149	0,14105	828,36	1764,43	2592,79	829,96	1959,99	2789,96	2,2835	4,1863	6,4697
200	1553,8	0,001156	0,12736	850,64	1744,66	2595,29	852,43	1940,75	2793,18	2,3308	4,1014	6,4322
205	1723,0	0,001164	0,11521	873,02	1724,49	2597,52	875,03	1921,00	2796,03	2,3779	4,0172	6,3951
210	1906,3	0,001173	0,10441	895,51	1703,93	2599,44	897,75	1900,73	2798,48	2,4247	3,9337	6,3584
215	2104,2	0,001181	0,09479	918,12	1682,94	2601,06	920,61	1879,91	2800,51	2,4713	3,8507	6,3221
220	2317,8	0,001190	0,08619	940,85	1661,49	2602,35	943,61	1858,51	2802,12	2,5177	3,7683	6,2860
225	2547,7	0,001199	0,07849	963,72	1639,58	2603,30	966,77	1836,50	2803,27	2,5639	3,6863	6,2502
230	2794,9	0,001209	0,07158	986,72	1617,17	2603,89	990,10	1813,85	2803,95	2,6099	3,6047	6,2146
235	3060,1	0,001219	0,06536	1009,88	1594,24	2604,11	1013,61	1790,53	2804,13	2,6557	3,5233	6,1791
240	3344,2	0,001229	0,05976	1033,19	1570,75	2603,95	1037,31	1766,50	2803,81	2,7015	3,4422	6,1436
245	3648,2	0,001240	0,05470	1056,69	1546,68	2603,37	1061,21	1741,73	2802,95	2,7471	3,3612	6,1083
250	3973,0	0,001251	0,05013	1080,37	1522,00	2602,37	1085,34	1716,18	2801,52	2,7927	3,2802	6,0729
255	4319,5	0,001263	0,04598	1104,26	1496,66	2600,93	1109,72	1689,80	2799,51	2,8382	3,1992	6,0374
260	4688,6	0,001276	0,04220	1128,37	1470,64	2599,01	1134,35	1662,54	2796,89	2,8837	3,1181	6,0018
265	5081,3	0,001289	0,03877	1152,72	1443,87	2596,60	1159,27	1634,34	2793,61	2,9293	3,0368	5,9661
270	5498,7	0,001302	0,03564	1177,33	1416,33	2593,66	1184,49	1605,16	2789,65	2,9750	2,9551	5,9301
275	5941,8	0,001317	0,03279	1202,23	1387,94	2590,17	1210,05	1574,92	2784,97	3,0208	2,8730	5,8937
280	6411,7	0,001332	0,03017	1227,43	1358,66	2586,09	1235,97	1543,55	2779,53	3,0667	2,7903	5,8570
285	6909,4	0,001348	0,02777	1252,98	1328,41	2581,38	1262,29	1510,97	2773,27	3,1129	2,7069	5,8198
290	7436,0	0,001366	0,02557	1278,89	1297,11	2575,99	1289,04	1477,08	2766,13	3,1593	2,6227	5,7821
295	7992,8	0,001384	0,02354	1305,21	1264,67	2569,87	1316,27	1441,78	2758,05	3,2061	2,5375	5,7436
300	8581,0	0,001404	0,02167	1331,97	1230,99	2562,96	1344,01	1404,93	2748,94	3,2533	2,4511	5,7044
305	9201,8	0,001425	0,01995	1359,22	1195,94	2555,16	1372,33	1366,38	2738,72	3,3009	2,3633	5,6642
310	9856,6	0,001447	0,01835	1387,03	1159,37	2546,40	1401,29	1325,97	2727,27	3,3492	2,2737	5,6229
315	10547	0,001472	0,01687	1415,44	1121,11	2536,55	1430,97	1283,48	2714,44	3,3981	2,1821	5,5803
320	11274	0,001499	0,01549	1444,55	1080,93	2525,48	1461,45	1238,64	2700,08	3,4479	2,0882	5,5361
325	12040	0,001528	0,01420	1474,44	1038,57	2513,01	1492,84	1191,13	2683,97	3,4987	1,9913	5,4900
330	12845	0,001561	0,01300	1505,24	993,66	2498,91	1525,29	1140,56	2665,85	3,5506	1,8909	5,4416
335	13694	0,001597	0,01186	1537,11	945,77	2482,88	1558,98	1086,37	2645,35	3,6040	1,7863	5,3903
340	14586	0,001638	0,01080	1570,26	894,26	2464,53	1594,15	1027,86	2622,01	3,6593	1,6763	5,3356
345	15525	0,001685	0,00978	1605,01	838,29	2443,30	1631,17	964,02	2595,19	3,7169	1,5594	5,2763
350	16514	0,001740	0,00881	1641,81	776,58	2418,39	1670,54	893,38	2563,92	3,7776	1,4336	5,2111
355	17554	0,001807	0,00787	1681,41	707,11	2388,52	1713,13	813,59	2526,72	3,8427	1,2951	5,1378
360	18651	0,001892	0,00694	1725,19	626,29	2351,47	1760,48	720,52	2481,00	3,9146	1,1379	5,0525
365	19807	0,002011	0,00599	1776,13	526,54	2302,67	1815,96	605,44	2421,40	3,9983	0,9487	4,9470
370	21028	0,002213	0,00493	1843,84	384,69	2228,53	1890,37	441,75	2332,12	4,1104	0,6868	4,7972
374,1	22089	0,003155	0,00315	2029,58	0,00	2029,58	2099,26	0,00	2099,26	4,4297	0,0000	4,4297

Tabela B.1.2 Água saturada: tabela em função da pressão

			specifico /kg)	Ene	ergia inte (kJ/kg)	rna		Entalpia (kJ/kg)			Entropia (kJ/kg K)	
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
P	T	v_i	V_{ν}	U _I	U _{lv}	u_{ν}	hj	h_{lr}	h_{ν}	s_j	s_{lv}	$\mathcal{S}_{_{V}}$
0,6113	0,01	0,001000	206,132	0	2375,3	2375,3	0,00	2501,30	2501,30	0,0000	9,1562	9,1562
1	6,98	0,001000	129,20802	29,29	2355,69	2384,98	29,29	2484,89	2514,18	0,1059	8,8697	8,9756
1,5	13,03	0,001001	87,98013	54,70	2338,63	2393,32	54,70	2470,59	2525,30	0,1956	8,6322	8,8278
2	17,50	0,001001	67,00385	73,47	2326,02	2399,48	73,47	2460,02	2533,49	0,2607	8,4629	8,7236
2,5	21,08	0,001002	54,25385	88,47	2315,93	2404,40	88,47	2451,56	2540,03	0,3120	8,3311	8,6431
3	24,08	0,001003	45,66502	101,03	2307,48	2408,51	101,03	2444,47	2545,50	0,3545	8,2231	8,5775
4	28,96	0,001004	34,80015	121,44	2293,73	2415,17	121,44	2432,93	2554,37	0,4226	8,0520	8,4746
5	32,88	0,001005	28,19251	137,79	2282,70	2420,49	137,79	2423,66	2561,45	0,4763	7,9187	8,3950
7,5	40,29	0,001008	19,23775	168,76	2261,74	2430,50	168,77	2406,02	2574,79	0,5763	7,6751	8,2514
10	45,81	0,001010	14,67355	191,79	2246,10	2437,89	191,81	2392,82	2584,63	0,6492	7,5010	8,1501
15	53,97	0,001014	10,02218	225,90	2222,83	2448,73	225,91	2373,14	2599,06	0,7548	7,2536	8,0084
20	60,06	0,001017	7,64937	251,35	2205,36	2456,71	251,38	2358,33	2609,70	0,8319	7,0766	7,9085
25	64,97	0,001020	6,20424	271,88	2191,21	2463,08	271,90	2346,29	2618,19	0,8930	6,9383	7,8313
30	69,10	0,001022	5,22918	289,18	2179,22	2468,40	289,21	2336,07	2625,28	0,9439	6,8247	7,7686
40	75,87	0,001026	3,99345	317,51	2159,49	2477,00	317,55	2319,19	2636,74	1,0258	6,6441	7,6700
50	81,33	0,001030	3,24034	340,42	2143,43	2483,85	340,47	2305,40	2645,87	1,0910	6,5029	7,5939
75	91,77	0,001037	2,21711	394,29	2112,39	2496,67	384,36	2278,59	2662,96	1,2129	6,2434	7,4563
100	99,62	0,001043	1,69400	417,33	2088,72	2506,06	417,44	2258,02	2675,46	1,3025	6,0568	7,3593
125	105,99	0,001048	1,37490	444,16	2069,32	2513,48	444,30	2241,05	2685,35	1,3739	5,9104	7,2843
150	111,37	0,001053	1,15933	466,92	2052,72	2519,64	467,08	2226,46	2693,54	1,4335	5,7897	7,2232
175	116,06	0,001057	1,00363	486,78	2038,12	2524,90	486,97	2213,57	2700,53	1,4848	5,6868	7,1717
200	120,23	0,001061	0,88573	504,47	2025,02	2529,49	504,68	2201,96	2706,63	1,5300	5,5970	7,1271
225	124,00	0,001064	0,79325	520,45	2013,10	2533,56	520,69	2191,35	2712,04	1,5705	5,5173	7,0878
250	127,43	0,001067	0,71871	535,08	2002,14	2537,21	535,34	2181,55	2716,89	1,6072	5,4455	7,0526
275	130,60	0,001070	0,65731	548,57	1991,95	2540,53	548,87	2172,42	2721,29	1,6407	5,3801	7,0208
300	133,55	0,001073	0,60582	561,13	1982,43	2543,55	561,45	2163,85	2725,30	1,6717	5,3201	6,9918
325	136,30	0,001076	0,56201	572,88	1973,46	2546,34	573,23	2155,76	2728,99	1,7005	5,2646	6,9651
350	138,88	0,001079	0,52425	583,93	1964,98	2548,92	584,31	2148,10	2732,40	1,7274	5,2130	6,9404
375	141,32	0,001081	0,49137	594,38	1956,93	2551,31	594,79	2140,79	2735,58	1,7527	5,1647	6,9174
400	143,63	0,001084	0,46246	604,29	1949,26	2553,55	604,73	2133,81	2738,53	1,7766	5,1193	6,8958
450	147,93	0,001088	0,41398	622,75	1934,87	2557,62	623,24	2120,67	2743,91	1,8206	5,0359	6,8565
500	151,86	0,001093	0,37489	639,66	1921,57	2561,23	640,21	2108,47	2748,67	1,8606	4,9606	6,8212
550	155,48	0,001097	0,34268	655,30	1909,17	2564,47	655,91	2097,04	2752,94	1,8972	4,8920	6,7892
600	158,85	0,001101	0,31567	669,88	1897,52	2567,40	670,54	2086,26	2756,80	1,9311	4,8289	6,7600
650	162,01	0,001104	0,29268	683,55	1886,51	2570,06	684,26	2076,04	2760,30	1,9627	4,7704	6,7330
700	164,97	0,001108	0,27286	696,43	1876,07	2572,49	697,20	2066,30	2763,50	1,9922	4,7158	6,7080
750	167,77	0,001111	0,25560	708,62	1866,11	2574,73	709,45	2056,89	2766,43	2,0199	4,6647	6,6846
800	170,43	0,001115	0,24043	720,20	1856,58	2576,79	721,10	2048,04	2769,13	2,0461	4,6166	6,6627

Tabela B.1.2 (continuação) Água saturada: tabela em função da pressão

		Volume e: (m ³ /		Ene	ergia inte (kJ/kg)	rna		Entalpia (kJ/kg)			Entropia (kJ/kg K)	
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
Ρ	T	Vį	V_{ν}	u _j	Ulv	u_{ν}	hj	h_{br}	h,	s_i	s_{b}	8,
850	172,96	0,001118	0,22698	731,25	1847,45	2578,69	732,20	2039,43	0,2771,63	2,0709	4,5711	6,6421
900	175,38	0,001121	0,21497	741,81	1838,65	2580,46	742,82	2031,12	2773,94	2,0946	4,5280	6,6225
950	177,69	0,001124	0,20419	751,94	1830,17	2582,11	753,00	2023,08	2776,08	2,1171	4,4869	6,6040
1000	179,91	0,001127	0,19444	761,67	1821,97	2583,64	762,79	2015,29	2778,08	2,1386	4,4478	6,5864
1100	184,09	0,001133	0,17753	780,08	1806,32	2586,40	781,32	2000,36	2781,68	2,1791	4,3744	6,5535
1200	187,99	0,001139	0,16333	797,27	1791,55	2588,82	798,64	1986,19	2784,82	2,2165	4,3067	6,5233
1300	191,64	0,001144	0,15125	813,42	1777,53	2590,95	814,91	1972,67	2787,58	2,2514	4,2438	6,4953
1400	195,07	0,001149	0,14084	828,68	1764,15	2592,83	830,29	1959,72	2790,00	2,2842	4,1850	6,4692
1500	198,32	0,001154	0,13177	843,14	1751,30	2594,50	844,87	1947,28	2792,15	2,3150	4,1298	6,4448
1750	205,76	0,001166	0,11349	876,44	1721,39	2597,83	878,48	1917,95	2796,43	2,3851	4,0044	6,3895
2000	212,42	0,001177	0,09963	906,42	1693,84	2600,26	908,77	1890,74	2799,51	2,4473	3,8935	6,3408
2250	218,45	0,001187	0,08875	933,81	1668,18	2601,98	936,48	1865,19	2801,67	2,5034	3,7938	6,2971
2500	223,99	0,001197	0,07998	959,09	1644,04	2603,13	962,09	1840,98	2803,07	2,5546	3,7028	6,2574
2750	229,12	0,001207	0,07275	982,65	1621,16	2603,81	985,97	1817,89	2803,86	2,6018	3,6190	6,2208
3000	233,90	0,001216	0,06668	1004,76	1599,34	2604,10	1008,41	1795,73	2804,14	2,6456	3,5412	6,1869
3250	238,38	0,001226	0,06152	1025,62	1578,43	2604,04	1029,60	1774,37	2803,97	2,6866	3,4685	6,1551
3500	242,60	0,001235	0,05707	1045,41	1558,29	2603,70	1049,73	1753,70	2803,43	2,7252	3,4000	6,1252
4000	250,40	0,001252	0,04978	1082,28	1519,99	2602,27	1087,29	1714,09	2801,38	2,7963	3,2737	6,0700
5000	263,99	0,001286	0,03944	1147,78	1449,34	2597,12	1154,21	1640,12	2794,33	2,9201	3,0532	5,9733
6000	275,64	0,001319	0,03244	1205,41	1384,27	2589,69	1213,32	1571,00	2784,33	3,0266	2,8625	5,8891
7000	285,88	0,001351	0,02737	1257,51	1322,97	2580,48	1266,97	1505,10	2772,07	3,1210	2,6922	5,8132
8000	295,06	0,001384	0,02352	1305,54	1264,25	2569,79	1316,61	1441,33	2757,94	3,2067	2,5365	5,7431
9000	303,40	0,001418	0,02048	1350,47	1207,28	2557,75	1363,23	1378,88	2742,11	3,2857	2,3915	5,6771
10000	311,06	0,001452	0,01803	1393,00	1151,40	2544,41	1407,53	1317,14	2724,67	3,3595	2,2545	5,6140
11000	318,15	0,001489	0,01599	1433,68	1096,06	2529,74	1450,05	1255,55	2705,60	3,4294	2,1233	5,5527
12000	324,75	0,001527	0,01426	1472,92	1040,76	2513,67	1491,24	1193,59	2684,83	3,4961	1,9962	5,4923
13000	330,93	0,001567	0,01278	1511,09	984,99	2496,08	1531,46	1130,76	2662,22	3,5604	1,8718	5,4323
14000	336,75	0,001611	0,01149	1548,53	928,23	2476,76	1571,08	1066,47	2637,55	3,6231	1,7485	5,3716
15000	342,24	0,001658	0,01034	1585,58	869,85	2455,43	1610,45	1000,04	2610,49	3,6847	1,6250	5,3097
16000	347,43	0,001711	0,00931	1622,63	809,07	2431,70	1650,00	930,59	2580,59	3,7460	1,4995	5,2454
17000	352,37	0,001770	0,00836	1660,16	744,80	2404,96	1690,25	856,90	2547,15	3,8078	1,3698	5,1776
18000	357,06	0,001840	0,00749	1698,86	675,42	2374,28	1731,97	777,13	2509,09	3,8713	1,2330	5,1044
19000	361,54	0,001924	0,00666	1739,87	598,18	2338,05	1776,43	688,11	2464,54	3,9387	1,0841	5,0227
20000	365,81	0,002035	0,00583	1785,47	507,58	2293,05	1826,18	583,56	2409,74	4,0137	0,9132	4,9269
21000	369,89	0,002206	0,00495	1841,97	388,74	2230,71	1888,30	446,42	2334,72	4,1073	0,6942	4,8015
22000	373,80	0,002808	0,00353	1973,16	108,24	2081,39	2034,92	124,04	2158,97	4,3307	0,1917	4,5224
22089	374,14	0,003155	0,00315	2029,58	0,00	2029,58	2099,26	0,00	2099,26	4,4297	0,0000	4,4297

Tabe	la B.1.3											
	r ďágua s	uperaque	ecido									
T	V	и	h	8	V	и	h	S	V	и	h	s
	(m ³ /kg)			(kJ/kg K)				(kJ/kg K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)
			a (45,81)			P = 50 kP				P = 100 kl	Pa (99,62)	
Sat.	14,67355	2437,89	2584,63	8,1501	3,24034	2483,85	2645,87	7,5939	1,69400	2506,06	2675,46	7,3593
50	14,86920	2443,87	2592,56	8,1749						-	-	-
100	17,19561	2515,50	2687,46	8,4479	3,41833	2511,61	2682,52	7,6947	-	-	-	-
150	19,51251	2587,86	2782,99	8,6881	3,88937	2585,61	2780,08	7,9400	1,93636	2582,75	2776,38	7,6133
200	21,82507	2661,27	2879,52	8,9037	4,35595	2659,85	2877,64	8,1579	2,17226	2658,05	2875,27	7,8342
250	24,13559	2735,95	2977,31	9,1002	4,82045	2734,97	2975,99	8,3555	2,40604	2733,73	2974,33	8,0332
300 400	26,44508 31,06252	2812,06 2968,89	3076,51 3279,51	9,2812 9,6076	5,28391 6,20929	2811,33 2968,43	3075,52 3278,89	8,5372 8,8641	2,63876 3,10263	2810,41 2967,85	3074,28 3278,11	8,2157 8,5434
500	35,67896	3132,26	3489,05	9,8977	7,13364	3131,94	3488,62	9,1545	3,56547	3131,54	3488,09	8,8341
600	40,29488	3302,45	3705,40	10,1608	8,05748	3302,22	3705,10	9,4177	4,02781	3301,94	3704,72	9,0975
700	44,91052	3479,63	3928,73	10,4028	8,98104	3479,45	3928,51	9,6599	4,48986	3479,24	3928,23	9,3398
800	49,52599	3663,84	4159,10	10,6281	9,90444	3663,70	4158,92	9,8852	4,95174	3663,53	4158,71	9,5652
900	54,14137	3855,03	4396,44	10,8395	10,82773	3854,91	4396,30	10,0967	5,41353	3854,77	4396,12	9,7767
1000	58,75669	4053,01	4640,58	11,0392	11,75097	4052,91	4640,46	10,2964	5,87526	4052,78	4640,31	9,9764
1100	63,37198	4257,47	4891,19	11,2287	12,67418	4257,37	4891,08	10,4858	6,33696	4257,25	4890,95	10,1658
1200	67,98724	4467,91	5147,78	11,4090	13,59737	4467,82	5147,69	10,6662	6,79863	4467,70	5147,56	10,3462
1300	72,60250	4683,68	5409,70	14,5810	14,52054	4683,58	5409,61	10,8382	7,26030	4683,47	5409,49	10,5182
			a (120,23			P= 300 kF				P = 400 kF		
Sat.	0,88573	2529,49	2706,63	7,1271	0,60582	2543,55	2725,30	6,9918	0,46246	2553,55	2738,53	6,8958
150	0,95964	2576,87	2768,80	7,2795	0,63388	2570,79	2760,95	7,0778	0,47084	2564,48	2752,82	6,9299
200	1,08034	2654,39	2870,46	7,5066	0,71629	2650,65	2865,54	7,3115	0,53422	2646,83	2860,51	7,1706
250	1,19880	2731,22	2970,98	7,7085	0,79636	2728,69	2967,59	7,5165	0,59512	2726,11	2964,16	7,3788
300	1,31616	2808,55	3071,79	7,8926	0,87529	2806,69	3069,28	7,7022	0,65484	2804,81	3066,75	7,5661
400	1,54930	2966,69	3276,55	8,2217	1,03151	2965,53	3274,98	8,0329	0,77262	2964,36	3273,41	7,8984
500	1,78139	3130,75	3487,03	8,5132	1,18669	3129,95	3485,96	8,3250	0,88934	3129,15	3484,89	8,1912
600	2,01297	3301,36	3703,96	8,7769	1,34136	3300,79	3703,20	8,5892	1,00555	3300,22	3702,44	8,4557
700	2,24426	3478,81	3927,66	9,0194	1,49573	3478,38	3927,10	8,8319	1,12147	3477,95	3926,53	8,6987
800	2,47539	3663,19	4158,27	9,2450	1,64994	3662,85	4157,83	9,0575	1,23722	3662,51	4157,40	8,9244
900	2,70643	3854,49	4395,77	9,4565	1,80406	3854,20	4395,42	9,2691	1,35288	3853,91	4395,06	9,1361
1000	2,93740	4052,53	4640,01	9,6563	1,95812	4052,27	4639,71	9,4689	1,46847	4052,02	4639,41	9,3360
1100	3,16834		4890,68			4256,77			1,58404	4256,53	4890,15	9,5255
1200	3,39927	4467,46	5147,32		2,26614	4467,23	5147,07		1,69958	4466,99	5146,83	9,7059
1300			5409,26			4682,99	5409,03		1,81511		5408,80	9,8780
Cat			27.49.67			P = 600 kF				P = 800 kF		
Sat.	0,37489	2561,23	2855,37	6,8212		2567,40		6,7600	0,24043	2576,79	2769,13	6,6627
200 250	0,42492	2642,91 2723,50	2960,68	7,0592 7,2708	0,35202	2638,91 2720,86	2850,12 2957,16	6,9665 7,1816	0,26080	2630,61 2715,46	2839,25 2949,97	6,8158 7,0384
300	0,52256	2802,91	3064,20	7,4598	0,33363	2801,00	3061,63	7,3723	0,32411	2797,14	3056,43	7,2327
350	0,57012	2882,59	3167,65	7,6328	0,43437	2881,12	3165,66	7,5463	0,35439	2878,16	3161,68	7,4088
400	0,61728	2963,19	3271,83	7,7937	0,51372	2962,02	3270,25	7,7078	0,38426	2959,66	3267,07	7,5715
500	0,71093	3128,35	3483,82	8,0872	0,59199	3127,55	3482,75	8,0020	0,44331	3125,95	3480,60	7,8672
600	0,80406	3299,64	3701,67	8,3521	0,66974	3299,07	3700,91	8,2673	0,50184	3297,91	3699,38	8,1332
700	0,89691	3477,52	3925,97	8,5952	0,74720	3477,08	3925,41	8,5107	0,56007	3476,22	3924,27	8,3770
800	0,98959	3662,17	4156,96	8,8211	0,82450	3661,83	4156,52	8,7367	0,61813	3661,14	4155,65	8,6033
900	1,08217	3853,63	4394,71	9,0329	0,90169	3853,34	4394,36	8,9485	0,67610	3852,77	4393,65	8,8153
1000	1,17469	4051,76	4639,11	9,2328	0,97883	4051,51	4638,81	9,1484	0,73401	4051,00	4638,20	9,0153
1100	1,26718	4256,29	4889,88	9,4224	1,05594	4256,05	4889,61	9,3381	0,79188	4255,57	4889,08	9,2049
1200	1,35964	4466,76	5146,58	9,6028	1,13302	4466,52	5146,34	9,5185	0,84974	4466,05	5145,85	9,3854
1300	1,45210		5408,57	9,7749		4682,28			0,90758	4681,81	5407,87	9,5575

Tabe	la B.1.3	continuaç	:ão)									
	d'água s											
T	ν (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg K)	ν (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg K)
	P	= 1000 k	Pa (179,9	91)	F	P = 1200 k	Pa (187,9	9)	F	e 1400 k	Pa (195,0)	7)
Sat.	0,19444	2583,64	2778,08	6,5864	0,16333	2588,82	2784,82	6,5233	0,14084	2592,83	2790,00	6,4692
200	0,20596	2621,90	2827,86	6,6939	0,16930	2612,74	2815,90	6,5898	0,14302	2603,09	2803,32	6,4975
250	0,23268	2709,91	2942,59	6,9246	0,19235	2704,20	2935,01	6,8293	0,16350	2698,32	2927,22	6,7467
300	0,25794	2793,21	3051,15	7,1228	0,21382	2789,22	3045,80	7,0316	0,18228	2785,16	3040,35	6,9533
350	0,28247	2875,18	3157,65	7,3010	0,23452	2872,16	3153,59	7,2120	0,20026	2869,12	3149,49	7,1359
400	0,30659	2957,29	3263,88	7,4650	0,25480	2954,90	3260,66	7,3773	0,21780	2952,50	3257,42	7,3025
500	0,35411	3124,34	3478,44	7,7621	0,29463	3122,72	3476,28	7,6758	0,25215	3121,10	3474,11	7,6026
600	0,40109	3296,76	3697,85	8,0289	0,33393	3295,60	3696,32	7,9434	0,28596	3294,44	3694,78	7,8710
700	0,44779	3475,35	3923,14	8,2731	0,37294	3474,48	3922,01	8,1881	0,31947	3473,61	3920,87	8,1160
800	0,49432	3660,46	4154,78	8,4996	0,41177	3659,77	4153,90	8,4149	0,3528	3659,09	4153,03	8,3431
900	0,54075	3852,19	4392,94	8,7118	0,45051	3851,62	4392,23	8,6272	0,38606	3851,05	4391,53	8,5555
1000	0,58712	4050,49	4637,60	8,9119	0,48919	4049,98	4637,00	8,8274	0,41924	4049,47	4636,41	8,7558
1100	0,63345	4255,09	4888,55	9,1016	0,52783	4254,61	4888,02	9,0171	0,45239	4254,14	4887,49	8,9456
1200	0,67977	4465,58	5145,36	9,2821	0,56646	4465,12	5144,87	9,1977	0,48552	4464,65	5144,38	9,1262
1300	0,72608	4681,33	5407,41	9,4542	0,60507	4680,86	5406,95	9,3698	0,51864	4680,39	5406,49	9,2983
	P	= 1600 kl	Pa (201,4	10)	F	P = 1800 k	Pa (207,1	5)	F	e 2000 kl	Pa (212,4)	2)
Sat.	0,12380	2595,95	2794,02	6,4217	0,11042	2598,38	2797,13	6,3793	0,09963	2600,26	2799,51	6,3408
250	0,14184	2692,26	2919,20	6,6732	0,12497	2686,02	2910,96	6,6066	0,11144	2679,58	2902,46	6,5452
300	0,15862	2781,03	3034,83	6,8844	0,14021	2776,83	3029,21	6,8226	0,12547	2772,56	3023,50	6,7663
350	0,17456	2866,05	3145,35	7,0693	0,15457	2862,95	3141,18	7,0099	0,13857	2859,81	3136,96	6,9562
400	0,19005	2950,09	3254,17	7,2373	0,16847	2947,66	3250,90	7,1793	0,15120	2945,21	3247,60	7,1270
450	-	-		-	-	-	-	-	0,16353	3030,41	3357,48	7,2844
500	0,22029	3119,47	3471,93	7,5389	0,19550	3117,84	3469,75	7,4824	0,17568	3116,20	3467,55	7,4316
600	0,24998	3293,27	3693,23	7,8080	0,22199	3292,10	3691,69	7,7523	0,19960	3290,93	3690,14	7,7023
700	0,27937	3472,74	3919,73	8,0535	0,24818	3471,87	3918,59	7,9983	0,22323	3470,99	3917,45	7,9487
800	0,30859	3658,40	4152,15	8,2808	0,27420	3657,71	4151,27	8,2258	0,24668	3657,03	4150,40	8,1766
900	0,33772	3850,47	4390,82	8,4934	0,30012	3849,90	4390,11	8,4386	0,27004	3849,33	4389,40	8,3895
1000	0,36678	4048,96	4635,81	8,6938	0,32598	4048,45	4635,21	8,6390	0,29333	4047,94	4634,61	8,5900
1100	0,39581	4253,66	4886,95	8,8837	0,35180	4253,18	4886,42	8,8290	0,31659	4252,71	4885,89	8,7800
1200	0,42482	4464,18	5143,89	9,0642	0,37761	4463,71	5143,40	9,0096	0,33984	4463,25	5142,92	8,9606
1300	0,45382	4679,92	5406,02	9,2364	0,40340	4679,44	5405,56	9,1817	0,36306	4678,97	5405,10	9,1328
	P	= 2500 kl	Pa (223,	99)	P	'= 3000 kl	Pa (233,9	0)	P	= 4000 kl	Pa (250,4	0)
Sat.	0,07998	2603,13	2803,07	6,2574	0,06668	2604,10	2804,14	6,1869	0,04978	2602,27	2801,38	6,0700
250	0,08700	2662,55	2880,06	6,4084	0,07058	2644,00	2855,75	6,2871	-	-	-	-
300	0,09890	2761,56	3008,81		0,08114	2750,05	2993,48	6,5389	0,05884	2725,33	2960,68	6,3614
350	0,10976		3126,24		0,09053	2843,66	3115,25	6,7427	0,06645	2826,65	3092,43	6,5820
400	0,12010	2939,03	3239,28		0,09936	2932,75	3230,82	6,9211	0,07341	2919,88	3213,51	6,7689
450	0,13014		3350,77		0,10787	3020,38	3344,00	7,0833	0,08003	3010,13	3330,23	6,9362
500	0,13998	3112,08			0,11619	3107,92	3456,48	7,2337	0,08643	3099,49	3445,21	7,0900
600	0,15930	3287,99	3686,25		0,13243	3285,03	3682,34	7,5084	0,09885	3279,06	3674,44	7,3688
700	0,17832	3468,80			0,14838	3466,59	3911,72	7,7571	0,11095	3462,15	3905,94	7,6198
	.,		and stone	10.00	-1-1-0-0			1,131				,,,,,,,,,,

0,16414 3653,58 4146,00 7,9862

0,17980 3846,46 4385,87 8,1999

0,21098 4250,33 4883,26 8,5911

0,24206 4676,63 5402,81 8,9442

8,4009

8,7719

0,19541 4045,40 4631,63

0,22652 4460,92 5140,49

0,12287 3650,11 4141,59

0,16987 4458,60 5138,07

0,14645 4042,87

0,13469 3843,59 4382,34 8,0647

0,15817 4247,96 4880,63 8,4566

0,18156 4674,29 5400,52 8,8099

4628,65

7,8502

8,2661

8,6376

800 0,19716 3655,30 4148,20 8,0720

900 0,21590 3847,89 4387,64 8,2853

1000 0,23458 4046,67 4633,12 8,4860

1100 0,25322 4251,52 4884,57 8,6761

1200 0,27185 4462,08 5141,70 8,8569

1300 0,29046 4677,80 5403,95 9,0291

	la B.1.3											
Vapor	d'água s v	uperaque u	ecido h	s	V	и	h	8	v	и	h	8
T	(m ³ /kg)	-		(kJ/kg K)	(m ³ /kg)	_		(kJ/kg K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)
			Pa (263,9				Pa (275,6			= 8000 kl		
Sat.	0,03944	2597,12	2794,33	5,9733	0,03244	2589,69	2784,33	5,8891	0,02352	2569,79	2757,94	5,7431
300	0,04532	2697,94	2924,53	6,2083	0,03616	2667,22	2884,19	6,0673	0,02426	2590,93	2784,98	5,7905
350	0,05194	2808,67	3068,39	6,4492	0,04223	2789,61	3042,97	6,3334	0,02995	2747,67	2987,30	6,1300
400	0.05781	2906,58	3195,64	6,6458	0,04739	2892,81	3177,17	6,5407	0,03432	2863,75	3138,28	6,3633
450	0,06330	2999,64	3316,15	6,8185	0,05214	2988,90	3301,76	6,7192	0,03817	2966,66	3271,99	6,5550
500	0,06857	3090,92	3433,76	6,9758	0,05665	3082,20	3422,12	6,8802	0,04175	3064,30	3398,27	6,7239
550	0,07368	3181,82	3550,23	7,1217	0,06101	3174,57	3540,62	7,0287	0,04516	3159,76	3521,01	6,8778
600	0,07869	3273,01	3666,47	7,2588	0,06525	3266,89	3658,40	7,1676	0,04845	3254,43	3642,03	7,0205
700	0,08849	3457,67	3900,13	7,5122	0,07352	3453,15	3894,28	7,4234	0,05481	3444,00	3882,47	7,2812
800	0,09811	3646,62	4137,17	7,7440	0,08160	3643,12	4132,74	7,6566	0,06097	3636,08	4123,84	7,5173
900	0,10762	3840,71	4378,82	7,9593	0,08958	3837,84	4375,29	7,8727	0,06702	3832,08	4368,26	7,7350
1000	0,11707	4040,35	4625,69	8,1612	0,09749	4037,83	4622,74	8,0751	0,07301	4032,81	4616,87	7,9384
1100	0,12648	4245,61	4878,02	8,3519	0,10536	4243,26	4875,42	8,2661	0,07896	4238,60	4870,25	8,1299
1200	0,13587	4456,30	5135,67	8,5330	0,11321	4454,00	5133,28	8,4473	0,08489	4449,45	5128,54	8,3115
1300	0,14526	4671,96	5398,24	8,7055	0,12106	4669,64	5395,97	8,6199	0,09080	4665,02	5391,46	8,4842
			Pa (311,0		P		Pa (342,2			= 20 000		
Sat.	0,01803	2544,41	2724,67	5,6140	0,01034	2455,43	2610,49	5,3097	0,00583	2293,05	2409,74	4,9269
350	0,02242	2699,16	2923,39	5,9442	0,01147	2520,36	2692,41	5,4420		-	-	-
400	0,02641	2832,38	3096,46	6,2119	0,01565	2740,70	2975,44	5,8810	0,00994	2619,22	2818,07	5,5539
450	0,02975	2943,32	3240,83	6,4189	0,01845	2879,47	3156,15	6,1403	0,01270	2806,16	3060,06	5,9016
500	0,03279	3045,77	3373,63	6,5965	0,02080	2996,52	3308,53	6,3442	0,01477	2942,82	3238,18	6,1400
550	0,03564	3144,54	3500,92	6,7561	0,02293	3104,71	3448,61	6,5198	0,01656	3062,34	3393,45	6,3347
600	0,03837	3241,68	3625,34	6,9028	0,02491	3208,64	3582,30	6,6775	0,01818	3174,00	3537,57	6,5048
650	-	-	-	-	0,02680	3310,37	3712,32	6,8223	0,01969	3281,46	3675,32	6,6582
700	0,04358	3434,72	3870,52	7,1687	0,02861	3410,94	3840,12	6,9572	0,02113	3386,46	3809,09	6,7993
800	0,04859	3628,97	4114,91	7,4077	0,03210	3610,99	4092,43	7,2040	0,02385	3592,73	4069,80	7,0544
900	0,05349	3826,32	4361,24	7,6272	0,03546	3811,89	4343,75	7,4279	0,02645	3797,44	4326,37	7,2830
1000	0,05832	4027,81	4611,04	7,8315	0,03875	4015,41	4596,63	7,6347	0,02897	4003,12	4582,45	7,4925
1100	0,06312	4233,97	4865,14	8,0236	0,04200	4222,55	4852,56	7,8282	0,03145	4211,30	4840,24	7,6874
1200	0,06789	4444,93	5123,84	8,2054	0,04523	4433,78	5112,27	8,0108	0,03391	4422,81	5100,96	7,8706
1300	0,07265	4660,44	5386,99	8,3783	0,04845	4649,12	5375,94	8,1839	0,03636	4637,95	5365,10	8,0441
			000 kPa				000 kPa					
375	0,001789				0,001641			3,8289				
400	0,002790				0,001908			4,1134				
425	0,005304			5,1503		2096,83		4,5028				
450	0,006735		2821,35	5,4423	0,003693		2512,79	4,9459				
500	0,008679		3081,03	5,7904	0,005623			5,4699				
550	0,010168			6,0342		2869,69		5,7784				
600	0,011446					3022,61		6,0113				
650	0,012596			6,4057		3158,04		6,2054				
700	0,013661			6,5606	0,009942		3681,29	6,3750				
800	0,015623		4024,31	6,8332	0,011523		3978,80	6,6662				
900	0,017448 0,019196			7,0717		3739,42		6,9150				
				7,2867	0,014324			7,1356				
	0,020903				0,015643			7,3364 7,5224				
	0,022568						5323,45					
1000	0,024200	4010,00	3343,33	1,0402	0,010223	4004,20	0020,40	7,0305				

ANEXO A – Interpolação na Admissão e Saída das Turbinas na Extração

			450,00	3330,23		3316,15				260,00	2974,60		2973,70				450,00	3330,23		3350,77				260,00	2974,60		2973,70
			403,55 4		5,55	- 1				255,82 2	2965,58 29	20'9	2964,68 29				404,85 4	3224,83 33	3224,50	3210,68 33				240,23 2	2931,99 29	2,57	2931,09 2
	17	tura °C	403	3221,81	3216,55	3204,21		17	tura °C	255	2962	2966,05	2964		17	atura	404	325		3210		17	atura	240	293	2932,57	
	25/12/2017	Temperatura ₀C	400,00	3213,51	3208,17	3195,64		25/12/2017	Temperatura ₀C	240,00	2931,50	2931,96	2930,60		25/12/2017	Temperatura	400,00	3213,51	3213,10	3195,64		25/12/2017	Temperatura	240,00	2931,50	2932,08	2930.60
				4000,00	4298,66	2000,00					725,00	712,14	750,00				'	4000,00	4023,11	5000,00				'	725,00	708,76	750.00
		e	da (ogss		Ш			e	dy (ogss	916	1			a)	dЯ (ogss		d			<u>al</u>	dy (oëss	:91 ₆	d
			450,00	3330,23		3316,15				260,00	2974,60		2973,70				450,00	3330,23		3350,77				260,00	2974,60		2973.70
m kJ/kg	17	tura °C	404,11	3223,10	3218,64	3205,54	em kJ/kg	117	tura °C	248,52	2949,85	2950,43	2948,95		017	ratura	405,39	3226,10	3226,40	3212,38		710	ratura	241,86	2935,51	2936,10	2934.61
Entalpia e	24/12/2017	Temperatura ₀C	400,00	3213,51	3208,97	3195,64	Entalpia e	24/12/2017	Temperatura ∘C	240,00	2931,50	2932,08	2930,60	IRBINA B	24/12/2017	Temperatura	400,00	3213,51	3213,89	3195,64	RBINA B	24/12/2017	Temperatura	240,00	2931,50	2932,09	2930.60
RBINA A -	2 T 2	4000,00	4254,13	2000,000	RBINA A -				725,00	98'80	750,00	AISSÃO TU				4000,00	3978,48	2000,000	RAÇÃO TU			'	725,00	708,70	750.00		
SÃO TU		е	dy (ÇÃO TU		e	dЯ	ogss			NA ADI		В	dЯ	oës		d	NA EXT		В	dЯ	oëss	916	
NA ADMIS			450,00	3330,23		3316,15	NA EXTRA			260,00	2974,60		2973,70	INTERPOLAÇÃO NA ADMISSÃO TURBINA B			450,00	3330,23		3350,77	INTERPOLAÇÃO NA EXTRAÇÃO TURBINA B			260,00	2974,60		2973,70
INTERPOLAÇÃO NA ADMISSÃO TURBINA A - Entalpia em kJ/kg	2017	Temperatura °C	403,30	3221,21	3216,46	3203,59	INTERPOLAÇÃO NA EXTRAÇÃO TURBINA A - Entalpia em kJ/kg	2017	Temperatura °C	248,64	2950,13	2950,31	2949,23	INTER	2017	Temperatura	404,50	3224,02	3223,91	3209,61	INTER	2017	Temperatura	243,54	2939,13	2939,72	2038 23
INTER	23/12/2017	Tempe	400,00	3213,51	3208,69	3195,64	INTER	23/12/2017	Tempe	240,00	2931,50	2931,68	2930,60		23/12/2017	Temp	400,00	3213,51	3213,37	3195,64		23/12/2017	Temp	240,00	2931,50	2932,08	2930.60
			<u>'</u>	4000,000	4269,73	2000,00					725,00	719,95	750,00				,	4000,000	4007,89	5000,000				'	725,00	98'80/	750.00
		e	dy (oëss		_			e	dЯ	oës	916	1			В	КЪ	ogss		d			В	dЯ	ogss	e a l	d
			450,00	3330,23		3316,15				260,00	2974,60		2973,70				450,00	3330,23		3350,77				260,00	2974,60		2973.70
	17	atura °C	403,72	3222,19	3217,60	3204,61		017	atura ∘C	249,55	2952,08	2952,26	2951,18		017	eratura	405,00	3225,18	3225,03	3211,15		017	eratura	245,32	2942,96	2943,54	2942.06
	72/12/2017	Temperatura ∘C	400,00	3213,51	3208,84	3195,64		22/12/2017	Temperatura ℃	240,00	2931,50	2931,68	2930,60		72/12/2017	Temperatura	400,00	3213,51	3213,33	3195,64		72/12/2017	Temperatura	240,00	2931,50	2932,08	2930.60
			'	4000,00	4261,37	2000,000					725,00	719,96	750,00					4000,00	4010,31	2000,000					725,00	708,80	750.00
		e	dy (ogss		_			e	dy (ogss	916	ı			В	dЯ	ogs		_			В	dЯ	oëss	916	d

ANEXO B – Interpolação na Admissão e Saída das Turbinas na Condensação

		INTERPOLAÇÃO NA ENTRADA CONDENSAÇÃO TURBINA A	ÃO NA ENT	TRADA COND	ENSAÇÃO TU	RBINAA				
Temperatura ℃		Tempe	Temperatura ℃		Temp	Temperatura ℃		Temp	Temperatura ℃	
50,00 51,26	55,00	20'00	51,90	25,00	20,00	52,37	22,00	20,00	52,83	22,00
2592,06 2594,27	2600,86	2592,06 259	2595,40	2600,86	2592,06 2	2596,23	2600,86	2592,06 2	2597,04	2600,86
		INTERPOLAÇÃO NA ENTRADA CONDENSAÇÃO TURBINA B	ÃO NA EN	TRADA CONE	ENSAÇÃO TU	IRBINA B				
Temperatura ℃		Tempe	Temperatura ∘C		Temp	Temperatura ℃		Temp	Temperatura ∘C	
45,00 49,97	20,00	20'00	50,17	22,00	45,00	49,06	20,00	45,00	49,60	20,00
2583,19 2592,00	2592,06	2592,06 2592,35	2,35	2600,86	2583,19 2	2590,40	2592,06	2583,19 2	2591,34	2592,06
		INTERPOLA	ÇÃO NA SA	AIDA CONDE	INTERPOLAÇÃO NA SAIDA CONDENSAÇÃO TURBINA A	BINAA				
712/2017		23/12/2017	7017		24/13	24/12/2017		25/17	25/12/2017	
Pressão kPa		Pres	Pressão kPa		Pre	Pressão kPa		Pre	Pressão kPa	
20,00 55,50	75,00	20'00	54,55	75,00	20,00	53,43	75,00	20,00	52,41	75,00
2305,40 2299,50	2278,59	2305,40 230	2300,52	2278,59	2305,40 2	2301,72	2278,59	2305,40 2	2302,82	2278,59
		INTERPOLA	ÇÃO NA S/	AIDA CONDE	INTERPOLAÇÃO NA SAIDA CONDENSAÇÃO TURBINA B	BINA B				
22/12/2017		23/12/2017	7017		24/12	24/12/2017		25/17	25/12/2017	
Pressão kPa		Pres	Pressão kPa		Pre	Pressão kPa		Pre	Pressão kPa	
75,00 77,53	100,00	75,00	77,34	100,00	75,00	77,84	100,00	75,00	77,44	100,00
2278,59 2276,51	2258,02	2278,59 2276,67	29'9	2258,02	2278,59 2276,26		2258,02	2278,59 2276,58	276,58	2258,02

ANEXO C – Interpolação dos dados de projetos, valores de entalpia e eficiência na extração e condensação encontrados

ADMISSÃO PROJETO

EXTRAÇÃO PROJETO

е	Te	mperatura	∘C	е	Te	mperatura	∘C
o kPa	400,00	400,00	450,00	kP	200,00	220,00	250,00
essão	3213,51	3213,51	3330,23	ssão	2839,25	2883,54	2949,97
Pres	3208,15	3208,15		ē			
_	3195,64	3195,64	3350,77	4			

CALCULO DO ΔΗ NA EXTRAÇÃO (kJ/kg)						
Data ΔH de Projeto ΔH Turbina Α ΔΗ Turbina						
22/12/2017	-324,61	-265,33	-281,49			
23/12/2017	-324,61	-266,15	-284,19			
24/12/2017	-324,61	-268,20	-290,30			
25/12/2017	-324,61	-250,50	-291,93			

CALCULO DO ΔΗ NA EXTRAÇÃO (kJ/kg)						
Data ΔH de Projeto ΔH Turbina A ΔH Turbina B						
22/12/2017	-495,27	-294,77	-315,50			
23/12/2017	-495,27	-294,87	-315,69			
24/12/2017	-495,27	-294,51	-314,14			
25/12/2017	-495,27	-294,22	-314,76			

CALCULO DA EFICIENCIA DAS TURBINAS NA EXTRAÇÃO				
Data	TURBINA A TURBINA B			
22/12/2017	81,74%	86,72%		
23/12/2017	81,99%	87,55%		
24/12/2017	82,62%	89,43%		
25/12/2017	25/12/2017 77,17% 89,93			
Média	80,88%	88,41%		

CALCULO DA EFICIENCIA DAS TURBINAS NA CONDENSAÇÃO				
Data	TURBINA A TURBINA I			
22/12/2017	59,52%	63,70%		
23/12/2017	59,54%	63,74%		
24/12/2017	59,46%	63,43%		
25/12/2017	59,41%	63,55%		
Média	59,48%	63,61%		

ANEXO D – Cálculo do título de vapor e da entalpia isentrópica na condensação

TÍTULO DE VAPOR:

$$S = SL + xv * (SV - SL) = 94,38\%$$

S = Entropia do vapor admitido na condensação 8,0164

SL = Entropia do líquido na pressão de condensação 0,674544

Sv = Entropia do vapor saturado do vapor admitido na condensação 8,4533

Xv = Título do vapor

ENTALPIA ISENTRÓPICA NA CONDENSAÇÃO:

$$Hs = HL + xv * (Hv - Hl)$$
 = 2388,269

Hs = Entalpia do vapor admitido na condensação (Isentrópico)

HL = Entalpia do líquido na pressão de condensação 2388,10 (kJ/kg)

Hv = Entalpia do vapor saturado do vapor admitido na condensação 2388,28 (kJ/kg)

Xv = Título do vapor (isentrópico) 0,94

Interpolação da Entropia do líquido na pressão de condensação		Interpolação da Entalpia do líquido na pressão de condensação		Vapor Saturado em função da temperatura (kJ/kg)	
10,00	0,65	10,00 2392,82		45,00	2394,77
11,20	0,67	11,20	2388,10	47,70	2388,28
15,00	0,75	15,00	2373,14	50,00	2382,75

ANEXO E – Cálculo de geração

CALCULO DA ENERGIA GERADA					
Data	Turbina A	Turbina B	Projeto		
KWh KWh MWh					
22/12/2017	9423,94	10271,06	11,00		
23/12/2017	9460,17	10396,18	11,00		
24/12/2017	9557,33	10698,03	11,00		
25/12/2017	8751,73	10768,78	11,00		
Média 9298,29 10533,51 11,00					

Eficiencia de geração					
Data Turbina A Turbina B					
MWh MWh					
22/12/2017	85,67%	93,37%			
23/12/2017	86,00%	94,51%			
24/12/2017	86,88%	97,25%			
25/12/2017	79,56%	97,90%			
Média	84,53%	95,76%			

CALCULO DE CUSTO						
Data	Perda da Turbina A KWh	Perda da Turbina B KWh	Custo de 1 MWh R\$	Custo anual Turbina A	Custo Anual Turbina B	
22/12/2017	1,58	0,73	130,33	R\$ 1.685.987,43	R\$ 779.783,72	
23/12/2017	1,54	0,60	130,33	R\$ 1.647.233,74	R\$ 645.935,55	
24/12/2017	1,44	0,30	130,33	R\$ 1.543.290,76	R\$ 323.035,57	
25/12/2017	2,25	0,23	130,33	R\$ 2.405.085,02	R\$ 247.345,00	
Média	1,70	0,47	R\$ 130,33	R\$ 1.820.399,24	R\$ 499.024,96	